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Preliminaries



Autoencoders (I)

General idea behind autoencoders:

• We want to learn a low-dimensional representation of our data.

• We want to be able go back and forth from the encoding space and the original space.
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Autoencoders (II)

Figure 1: A vanilla Autoencoder (AE)

• Use a bottleneck Encoder-Decoder architecture to force a compact representation.

• Train a neural network to learn the identity function, i.e., to reconstruct the input.
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Autoencoders (III)

What are Autoencoders good for?

• Dimensionality reduction

• Representation learning

• Removing noise from the input data

• Generating new samples, but...
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Autoencoders (IV)

We can try to generate new samples sampling at random the encoding space:

• Why?
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Discriminative vs Generative models (I)

Standard AEs are discriminative models.

• Discriminative models learn to make predictions, i.e., learn a mapping from input to an

output.

• AEs are trained to reconstruct the input, not to generate new data.

• It is hard to say something about the structure of the encoding space of a standard AE ...

• ... it is not clear how to sample it to generate new datapoints: a point in the latent space

does not necessary correspond to a plausible observation.
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Discriminative vs Generative models (II)

Variational Autoencoders (VAEs)1 are generative models.

• Generative approaches model the stochastic process generating the data and predictions

are done using Bayes rule.

• Forcing the representations to be useful for generation often results in better

generalization.

• VAEs learn to (1) infer the latent representation behind each observation and (2) generate

realistic synthetic observations from points in the latent space.

In order to understand VAEs we need to introduce the concept of Latent Variable Models.

1Kingma and Welling 2013; Kingma and Welling 2019.
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Latent Variable Models (I)

• Given a dataset D, consider each sample x as a realization of a random vector, i.e.,

x ∼ p∗(x).

• p∗(x) is the unknown probability distribution underlying the process generating the data.

• We want to learn an approximating distribution, with a model parametrized by θ, such

that:

pθ(x) ≈ p∗(x);

pθ(x) is known as model evidence. The notation pθ( · ) indicates that probability

distribution pθ( · ) is a function of model parameters θ.
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Latent Variable Models (II)

A Latent Variable Model (LVM) uses an approximating distribution of the form:

pθ(x) =

∫
pθ(x , z) dz (1)

=

∫
pθ(x |z)pθ(z) dz , (product rule) (2)

where pθ(x |z) is the likelihood of observation x given the latent variables z with prior

distribution pθ(z). In the following we refer to the case where z is a finite dimensional random

vector and the likelihood is a known distribution, e.g., Gaussian.
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Latent Variable Models (III)

At this point you might have an intuition about what is going on...

• Sampling from pθ(x |z) we could generate new observations.

• Symmetrically, modeling pθ(z |x), known as the posterior distribution, we could make

inference about the latent variables given an observation...

• ... unfortunately computing the posterior is intractable for most models2!

• Solution: we use an approximate posterior qφ(z |x) ≈ pθ(z |x) (we’ll come back on this

later)

2To see why that is the case note that pθ(z |x) = pθ(x,z)
pθ(x)

and that computing pθ(x) involves computing the

integral in Eq. 1. See (Blei, Kucukelbir, and McAuliffe 2017) for a concrete example.
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Variational Autoencoders



Towards VAEs: the big picture

x-space

z-space

Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

 Encoder: q𝞍(z|x)

• The input space is a generic manifold.

• For the prior we usually use a Gaussian

z ∼ N (0, I )

• Similarly for the approximate posterior:

qφ(z |x) = N
(
z ;µφ(x), Iσ2

φ(x)
)

• The output of the probabilistic decoder

depends on the original space (e.g.,

Bernoulli for binary outputs)

3Kingma and Welling 2019.
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A possible implementation

Figure 2: A Variational Autoencoder

Let’s take a step back and consider the approximate posterior qφ(z |x)
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Variational Inference (I)

Variational Inference4 tackles the problem of approximating an intractable posterior from an

optimization perspective.

qφ∗(z |x) = argminφDKL(qφ(z |x) ‖ pθ(z |x))

The KL-divergence DKL( · ‖ · ) is intuitively a measure of dissimilarity between probability

distributions:

DKL(p(x) ‖ g(x)) =

∫
p(x) log

p(x)

g(x)
dx

4Blei, Kucukelbir, and McAuliffe 2017.
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Remark

Which approximation would you prefer? In which case DKL(qφ(z |x) ‖ pθ(z |x)) is lower?

NB:The KL-divergence is not symmetric.
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Variational Inference (II)

What optimization objective should we use?

DKL(qφ(z |x) ‖ pθ(z |x))

=

∫
qφ(z |x) log

qφ(z |x)

pθ(z |x)
dz (def.)

=

∫
qφ(z |x) log

qφ(z |x)pθ(x)

pθ(x , z)
dz (product rule)

=

∫
qφ(z |x)

(
log

qφ(z |x)

pθ(x , z)
+ log pθ(x)

)
dz

= log pθ(x) +

∫
qφ(z |x) log

qφ(z |x)

pθ(x , z)
dz (

∫
qφ(z|x) dz=1)

= log pθ(x) +

∫
qφ(z |x)

(
log

qφ(z |x)

pθ(z)
− log pθ(x |z)

)
dz (product rule)

= log pθ(x) +DKL(qφ(z |x) ‖ pθ(z))− Ez∼qφ [log pθ(x |z)]
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Variational Inference (III)

Rearranging the terms we get:

ELBO︸ ︷︷ ︸
Evidence Lower BOund

= log pθ(x)︸ ︷︷ ︸
evidence

−DKL (qφ(z |x)||pθ(z |x))︸ ︷︷ ︸
KL-divergence

= Ez∼qφ [log pθ(x |z)]−DKL(qφ(z |x) ‖ pθ(z)) ≤ log pθ(x)

Intuitively, by maximizing the ELBO we maximize the probability of generating plausible

samples while pushing the approximated posterior closer to the actual one.
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Variational Inference (IV)

ELBO = Ez∼qφ [log pθ(x |z)]−DKL(qφ(z |x) ‖ pθ(z))︸ ︷︷ ︸
L(x;θ,φ)

This expression is pretty easy to evaluate empirically by sampling the available data and the

approximated posterior, so we are done... are we?
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Reparameterization trick (I)

Problem: Sampling from a distribution is not a differentiable operation!

Solution: The reparameterization trick

18



Reparameterization trick (II)

In general the problem requires to estimate the gradient of an expectation:

∇θEz∼qθ [f (z)]

With the reparameterization trick we change the sampling distribution so that it becomes

independent from θ:

ε ∼ p(ε)

z = g(x , ε)

∇θEz∼qθ [f (z)] = ∇θEε∼p(ε) [f (g(x , ε))]

= Eε∼p(ε) [∇θf (g(x , ε))]

Other alternatives exist (e.g., see the REINFORCE estimator from the RL literature).
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Reparameterization trick (III)

ε ∼ N (0, I )

µz|x ,σ
2
z|x = Encoder(x)

z =µz|x + ε� σz|x
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Reparameterization trick (IV)

In the Gaussian case, assuming a J-dimensional latent space:

−DKL(qφ(z |x) ‖ pθ(z)) =

∫
qφ(z |x) (log pθ(z)− log qφ(z |x)) dz

=
1

2

J∑
j=1

(
1 + log((σ

(j)
z|x)2)− (µ

(j)
z|x)2 − (σ

(j)
z|x)2

)
.

Considering the i-th available sample x (i) and L samples from the approximate posterior:

L̃(x (i);θ,φ) =

1

2

J∑
j=1

(
1 + log((σ

(j)

z|x (i) )
2)− (µ

(j)

z|x (i) )
2 − (σ

(j)

z|x (i) )
2
)

+
1

L

L∑
l=1

log pθ(x (i)|z (i,l)),

where z (i,l) = µz|x (i ) + ε(l) � σz|x (i ) . The final optimization objective is:

L̃N(θ,φ) =
N∑
i=1

L̃(x (i);θ,φ)
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Examples of learned manifolds

5Kingma and Welling 2013.
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State of the art

6Razavi, Oord, and Vinyals 2019.
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Demo



Demo

https://cutt.ly/pfS0TKv
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Questions?
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Likelihood for a Bernoulli decoder

In the case where we model the output of the probabilistic decoder pθ(x |z) as multivariate

Bernoulli the log-likelihood can be compute as:

log pθ(x (i)|z (i,l)) =
N∑
i=1

x (i) log x̂ (i) +
(

1− x (i)
)

log
(

1− x̂ (i)
)

︸ ︷︷ ︸
binary cross-entropy

where x̂ (i) = Decoder(z (i,l)).



Likelihood for a Gaussian decoder

In the case of a multivariate diagonal Gaussian decoder:

log pθ(x (i)|z (i,l)) = logN (x (i);µx|z (i,l) ,σ2
x|z (i,l) )

where µx|z (i,l) ,σx|z (i,l) = Decoder(z (i,l)).

Note that:

• The output of the Decoder network is the mean and the variance of the Gaussian.

• No need of tricks to estimate the gradient since the expectation is over z and not x .



Credits

Most of the material was inspired and adapted from:

• The tutorial on VAEs from the authors of the original paper:

https://arxiv.org/abs/1906.02691

• This nice blogpost by Lilian Weng: https://lilianweng.github.io/lil-log/2018/

08/12/from-autoencoder-to-beta-vae.html

https://arxiv.org/abs/1906.02691
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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