Graph Deep Learning for Time Series
Forecasting

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera italiana
In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Andrea Cini

under the supervision of

Cesare Alippi

August 2024

Dissertation Committee

Prof. Michael Bronstein Universita della Svizzera italiana, CH
University of Oxford, UK
Prof. Luca Maria Gambardella Universita della Svizzera italiana, CH

Prof. Davide Bacciu University of Pisa, IT
Prof. Mathias Niepert University of Stuttgart, DE
Prof. Peter Tino University of Birmingham, UK

Dissertation accepted on 13 August 2024

Research Advisor PhD Program Director
Cesare Alippi Prof. Walter Binder / Prof. Stefan Wolf

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been
submitted previously, in whole or in part, to qualify for any other academic
award; and the content of the thesis is the result of work which has been car-
ried out since the official commencement date of the approved research program.

Andrea Cini
Lugano, 13 August 2024

ii

Abstract

Neural networks have been used to forecast time series for decades. One of the
key elements enabling most of the field’s recent achievements is the training
of a single neural network on large collections of related time series. This
approach, however, often considers each time series independently from the
others and, consequently, discards dependencies that might be instrumental
for accurate predictions. Nonetheless, the alternative of modeling the full
collection as a large multivariate time series cannot scale as it does not exploit
the structure of the data to reduce computational and sample complexity.
In this research, we aim to address the shortcomings of the state of the art
in correlated time series forecasting by relying on graph representations and
graph deep learning methods. We propose graph-based predictors that model
pairwise relationships among time series by conditioning forecasts on a (possibly
dynamic) graph spanning the collection. The conditioning is implemented as
an architectural bias directly embedded into the processing; as we will show,
this inductive bias enables the training of global forecasting models on large
sensor networks by accounting for local correlations (graph edges) among time
series (graph nodes). Our research introduces a comprehensive methodological
framework characterizing the family of these predictive models and provides
design principles for graph-based forecasting. Within this context, we propose
methods to tackle the inherent challenges of the field, i.e., dealing with missing
data, sparse observations, local effects, and latent relational dependencies. The
computational scalability of the proposed framework is also addressed, together
with methodologies enabling transfer learning and hierarchical forecasting.
Extensive empirical results validate the introduced methodologies and place
graph deep learning methods among the most important tools available in
modern forecasting.

iii

iv

Contents

Contents

List of Figures
List of Tables
List of Acronyms

1 Introduction
1.1 Goals and challenges
1.2 Contributions
1.3 Publications and dissemination
1.4 Outline.

2 Forecasting correlated time series
2.1 Problem settings L
2.1.1 Correlated time series
2.2 Multi-step time series forecasting
2.2.1 Point predictors
2.3 Global and local models
2.3.1 Global and local predictors
2.3.2 Global and local models for correlated time series
2.4 Performance metrics and model selection
2.5 Related work
2.5.1 Deep learning architectures for sequence modeling
2.5.2 Neural forecasting architectures

3 Graph deep learning for time series forecasting
3.1 Graph-based representations for collections of time series
3.1.1 Extensions to the reference settings

v

iii

xi

xiii

XV

11
12
12
14
14
15
15
17
18
19
20
22

25
26

Contents

3.2 Forecasting with relational side information 28
3.3 Spatiotemporal graph neural networks 29
3.3.1 Message-passing neural networks 30
3.3.2 Spatiotemporal message passing 31
3.3.3 A template architecture 32
3.34 Taxonomy 32
3.3.5 Globality and locality in STGNNs 35
3.4 Related work 35
3.4.1 Graph deep learning for temporal data 36
Benchmarks and baselines 39
4.1 Benchmarks 40
4.1.1 Data from real sensor networks 40
4.1.2 Syntheticdata. L. 41
4.2 Baselines. 42
4.3 Some empirical results 44
Local effects 47
5.1 Dealing with local effects 48
5.2 Hybrid global-local STGNNs 49
5.3 Node embeddings 50
5.3.1 Amortized specialization 51
5.3.2 Structuring the embedding space 51
5.4 Transferability oL 53
5.5 Related work 54
5.6 FEmpirical resultso 54
5.6.1 Syntheticdata. oL 5%)
5.6.2 Benchmarks 56
5.6.3 Transfer learning 58
5.7 Discussion and future directions 60
Missing data 61
6.1 Dealing with missingdata 63
6.1.1 Related work, 63
6.2 Problem definition L. 65
6.3 Graph Recurrent Imputation Network 66
6.3.1 Spatiotemporal encoder 67
6.3.2 Spatial decoder 68

6.3.3 Bidirectional model 69

vii Contents

6.3.4 Discussion and limitations 70

6.4 Spatiotemporal Point Imputation Network 71

6.4.1 Model conceptualization 71

6.4.2 Sparse spatiotemporal attention 72

6.4.3 Spatiotemporal positional encoding 74

6.4.4 Discussion and limitations 75

6.5 Empirical resultso 75

6.5.1 In-sample and out-of-sample imputation 76

6.5.2 Imputation benchmarks 7

6.5.3 Virtual sensingo 79

6.6 Discussion and future directions 80

7 Latent graph learning 83

7.1 Latent graph learning oo 84

7.1.1 Learning an adjacency matrix 84

7.1.2 Learning distributions over graphs 86

7.1.3 Related work L. 87

7.2 Preliminaries 89

7.2.1 Reference settings 89

7.2.2 Mean adjacency matrices 89

7.3 Problem formulation 0L 91

7.3.1 Graph learning from correlated time series 91

7.3.2 Core challenge L. 92

7.4 Score-based graph learning from correlated time series 93
7.4.1 Estimating gradients for stochastic message-passing net-

works ... 94

7.4.2 Graph distributions, graphs sampling, and graphs likelihood 95

7.4.3 Parametrizing the graph distribution 98

7.5 Reducing the variance of the estimator 99

7.5.1 Control variates and baselines 99

7.6 Layer-wise sampling and surrogate objective 103

7.6.1 Surrogate objective 104

7.7 FEmpirical results 105

7.7.1 Datasets 105

7.7.2 Controlled environment experiments 106

7.7.3 Real-world datasets 110

7.7.4 Scalability 112

7.8 Conclusions and future directions 113

viii

Contents

8 Computational scalability

8.1 Dealing with large time series collection
8.1.1 Computational scalability in STGNNs
8.2 Preliminaries
8.2.1 Echo state networks
8.3 Scalable spatiotemporal GNNs
8.3.1 Scalable spatiotemporal representation
8.3.2 Multi-scale decoder
8.3.3 Training and sampling
84 Related work
8.5 Empirical resultso
8.5.1 Experimental setup
852 Results. 0.
8.6 Discussion and future directions

9 Graph-based hierarchical forecasting

9.1 Hierarchical time series and graph clustering
9.1.1 Related work
9.2 Preliminaries oo
9.2.1 Operational settings
9.2.2 Hierarchical time series
9.3 Graph-based hierarchical clustering and forecasting
9.3.1 Graph-based hierarchical forecasting
9.3.2 End-to-end clustering and forecasting
9.3.3 Forecast reconciliation
9.4 Empirical resultso
9.4.1 End-to-end hierarchical clustering and forecasting
9.4.2 Cluster analysis
9.5 Discussion and future directions

10 Conclusion

10.1 Future directions
10.2 Final remarks

A Torch Spatiotemporal

A1 Related work

B Performance metrics

C Experimental setup

149

... 150
... 181

153

... 154

155

157

iX Contents

D Appendix to Chapter 4 159
D.1 Additional details on the experimental setup 159
D.1.1 Reference architectures 159

D.1.2 Hyperparameters 160

E Appendix to Chapter 5 161
E.1 Transfer learning experiment 161
E.1.1 Additional results 162

F Appendix to Chapter 6 165
F.1 Additional details on the experimental setup 165
F.1.1 Hyperparameters 165

G Appendix to Chapter 7 167
G.1 Deferred proofs 167
G.1.1 Proofof Lemma 1. 167

G.1.2 Proofof Lemma 2. 168

G.2 Details on the computation of the SNS likelihood 168
G.3 Additional details on the experimental setup 169
G.3.1 Synthetic experiments L. 169

G.3.2 AQIexperiment 170

G.3.3 Traffic experiment 170

H Appendix to Chapter 8 171
H.1 Additional details on the experimental setup 171
H.1.1 Hardware platform 171

H.1.2 Datasets oo 171

H.1.3 Additional details on the SGP architecture 172

H.1.4 Training and evaluation procedure 172

I Appendix to Chapter 9 175
[.1 Additional details on the experimental setup 175
[.L1.1 Reference architecture 175

[.L1.2 Hyperparameters and training details 175

Bibliography 177

Contents

Figures

1.1 Thesisoutline 4
2.1 Operational settings 12
3.1 Graph-based representation of a time series collection 26
4.1 GPVAR community graph 42
5.1 Time series clusters obtained by clustering node embeddings. . . 58
6.1 The architecture of GRIN 67
6.2 The architecture of SPIN 72
6.3 Sparse spatiotemporal attention block 73
6.4 Virtual sensing with GRIN 81
7.1 Graph learning architecture. 94
7.2 Graph learning on GPVAR 107
7.3 Sensitivity analysis (graph learning surrogate objective) 108
7.4 Sensitivity analysis (number of neighbors) 108
7.5 Comparison of different gradient estimators. 109
7.6 Computational scalability of different gradient estimators 112
8.1 Overview of SGP forecasting framework 117
8.2 Overview of the SGP encoder 119
8.3 Training curveson PV-US 129
9.1 Hierarchical time series 136
9.2 Time series with a hierarchical relational structure 137
9.3 Cluster assignments learned by HIiGP 146
A.1 Torch Spatiotemporal logo. 153

Xi

Xii

Figures

Tables

4.1
4.2
4.3

5.1
0.2
9.3

5.4
2.5

5.6

6.1

6.2
6.3

6.4

7.1
7.2

8.1
8.2
8.3

9.1

Details on the adopted datasets. 40
Evaluation of reference architectures on GPVAR-G. 43
Evaluation of reference architectures on benchmark data. 45
Evaluation of different RNN+IMP baselines. 50
Evaluation of different models on GPVAR-L. 55
Evaluation of global-local forecasting architectures with learnable

node embeddings.o 57
PEMS datasets 58

Evaluation of different transfer learning approaches with fine-
tuning on a week of observations 59
Sensitivity analysis of transfer learning approaches w.r.t. fine-
tuning set size 59

Evaluation of GRIN in in-sample and out-of-sample imputation

01 78
Evaluation of imputation models. 79
Evaluation of imputation models under increasing levels of data

sparsity. (Point missing) L. 80
Evaluation of imputation models under increasing levels of data

sparsity. (Block missing) L 80
Graph identification on AQL. 110
Evaluation of different forecasting architectures equipped with a

graph structure learning module. 111
Scalability benchmarks. 124
Evaluation of SGP against the state of the art. 127

Evaluation of different architectures on scalability benchmarks. . 128

Evaluation of HIGP on traffic benchmark datasets. 144

Xiii

xiv Tables
9.2 Evaluation of HiGP on traffic forecasting benchmarks. 145
E.1 Additional transfer learning results on PEMS03 162
E.2 Additional transfer learning results on PEMS04 163
E.3 Additional transfer learning results on PEMSO7 163
E.4 Additional transfer learning results on PEMS08 163

Acronyms

BES binary edge sampler. 95, 96, 98, 100, 101, 103, 106, 108, 109
CG computational graph. 92, 93, 95

DS deep set. 17

ESN echo state network. 20, 117-120, 126, 172

FR forecast reconciliation. 133, 141, 142

GCRNN graph convolutional recurrent neural network. 32, 33, 42-44, 63, 66,
67, 124

GDL graph deep learning. 2-5, 7, 8, 10, 36, 54, 61, 63, 64, 79, 80, 84, 133, 149

GNN graph neural network. 2, 24, 29, 30, 32, 36, 53, 65, 67, 84, 88, 133, 134,
143, 151, 154, 170

GRIN Graph Recurrent Imputation Network. xi, xiii, 63, 64, 66, 67, 69-71,
75-81, 149, 165

GRU gated recurrent unit. 32, 42, 43, 67, 110, 112, 159, 170

HiGP Hierarchical Graph Predictor. xi, xiii, xiv, 131, 133, 138, 141-147, 150,
175, 176

MAE mean absolute error. 18, 43-45, 55, 56, 70, 77, 78, 80, 106, 110, 111,
126, 155, 161, 174

MAPE mean absolute percentage error. 18, 126, 155, 156

MC Monte Carlo. 87, 92-94, 99, 104, 134

XV

XVi List of Acronyms

MIMO multiple-input-multiple-output. 17
MISO multiple-input-single-output. 17

MLP multilayer perceptron. 20, 21, 23, 30, 32, 66, 67, 69, 72, 76, 117, 119,
121-123, 135, 139, 143, 145, 159, 170, 172, 173

MP message-passing. 2, 20-37, 42, 43, 51, 56, 61, 67, 68, 76, 83-85, 87, 92, 93,
95, 98, 103, 110, 112, 116, 121, 135, 138, 139, 143145, 159, 173

MPG message-passing graph. 93
MPGRU message-passing GRU. 68, 69, 76-78, 165
MRE mean relative error. 18, 78, 156

MSE mean squared error. 18, 78, 155
NARX nonlinear autoregressive exogenous. 20

RMSE root mean squared error. 18

RNN recurrent neural network. 6, 16, 20-23, 32-34, 4245, 50, 55, 57, 61, 64,
76, 85, 118, 143, 159, 160

SF score-function. 87, 94

SGP Scalable Graph Predictor. xiii, 115, 117-119, 123, 125-130, 150, 172-174
SNS subset neighborhood sampler. 96, 98, 100-103, 106-112

SPIN Spatiotemporal Point Inference Network. 71-75, 77-80, 149, 166

SRC select, reduce, connect. 137

SSM state-space models. 21, 23, 37

STGNN spatiotemporal graph neural network. vi, 2, 7, 10, 25, 29, 31-33, 35,
47-49, 51, 53, 54, 56-58, 61, 63, 64, 83-86, 92, 115, 116, 122, 127, 129,
134, 151, 153, 159

STMP spatiotemporal message-passing. 31-33, 35, 43, 49, 72-74, 154, 159

STT space-then-time. 32, 34, 35, 116

XVii List of Acronyms

T&S time-and-space. 32-35, 42-45, 55, 92, 95, 112, 116, 145, 159
TCN temporal convolutional network. 16, 20, 21, 23, 24, 33, 34, 44

TTS time-then-space. 32, 34, 35, 42, 43, 45, 49, 55, 92, 110, 116, 123, 125,
127, 130, 135, 139, 143, 159, 170, 175

Xviii List of Acronyms

Chapter 1

Introduction

In modern cyber-physical systems, physical and virtual sensors continuously
produce large amounts of data. The result is a large collection of correlated
time series that learning systems should integrate and process to make accurate
predictions. Exploiting temporal dependencies as well as relationships across
time series is crucial to building models that can scale and make accurate
predictions. Proper inductive biases, i.e., soft or hard structural assumptions
steering the learning system toward the most plausible models, are and have
been among the key ingredients enabling many of the successes of deep learning
systems [Hochreiter and Schmidhuber, 1997; Sperduti and Starita, 1997; LeCun
and Bengio, 1998|. Similarly, traditional statistical methods for time series
analysis leverage the structure of the data generating process to obtain effective
models [Harvey et al., 1990; Hyndman et al., 2002].

Deep learning models have become fundamental tools in modern forecasting
practice [Benidis et al., 2022; Petropoulos et al., 2022]. The most successful
approach consists of training a single deep network on collections of related time
series while sharing parameters [Smyl, 2020; Salinas et al., 2020; Benidis et al.,
2022]. Although this allows for training large (global) models on vast amounts of
data, the resulting predictors process a time series at a time: they cannot take
advantage of existing relationships among time series. Conversely, considering
sequences in a collection as a single multivariate time series suffers from the
curse of dimensionality, does not enjoy the benefits of parameter sharing, and
does not take into account any structural (spatial) prior knowledge. Consider
the setting we discussed in the first paragraph, i.e., the large variety of sensors
that permeate any modern infrastructure (e.g., traffic networks and smart grids).
The resulting sets of time series have inherently rich spatiotemporal structure and
spatiotemporal dynamics. In these settings, the mentioned standard approaches

appear hopelessly inadequate. In particular, they cannot account for any prior
on the existing relationships and would most likely fall short in capturing
dependencies among time series. Pruning of spurious relationships by exploiting
prior knowledge could help, provided a method for encoding the appropriate
learning biases.

In this research, we argue that graph deep learning (GDL) [Bacciu et al., 2020
Bronstein et al., 2021| provides the appropriate framework and architectural
biases to go beyond the limitations of the current state of the art in deep learning
for time series forecasting. Within the GDL framework, dependencies can be
modeled in terms of pairwise relationships among time series in the collection.
The resulting representation is a graph where each time series is associated with
a node and functional relationships among them are represented as edges. The
conditioning of the predictor on observations at correlated time series can then
be embedded as an inductive bias into the neural architecture. Graph neural
networks (GNNs), e.g., based on the message-passing (MP) framework [Gilmer
et al., 2017], provide the suitable neural operators and the proper computational
and modeling framework. In particular, GNNs allow for both sharing parameters
among time series and accounting for observations at neighboring nodes (related
time series) [Cini et al., 2024].

Since the first applications of GDL to time series processing |Li et al.,
2018; Yu et al., 2018], the resulting models, called spatiotemporal graph neural
networks (STGNNs), have become well-established among practitioners [Jin
et al., 2023b]. STGNNs implement global and inductive architectures for
forecasting correlated time series, addressing the shortcomings of standard deep
learning predictors and opening up a large design space of methodologies and
architectures. Consequently, researchers have been proposing a large variety of
STGNNs by integrating MP into popular sequence modeling architectures, e.g.,
by exploiting MP to implement the gates of recurrent cells [Seo et al., 2018; Li
et al., 2018] and propagate representations in fully convolutional [Yu et al., 2018;
Wu et al., 2019] and attention-based architectures [Zheng et al., 2020; Wu et al.,
2022; Marisca et al., 2022]. The resulting STGNNs have been successful in a wide
range of time series benchmarks ranging from traffic flow prediction [Li et al.,
2018; Yu et al., 2018; Wu et al., 2019], air quality monitoring [Chen et al., 2021b;
Iskandaryan et al., 2023], and energy analytics [Eandi et al., 2022; Cini et al.,
2023al, to financial time series [Chen et al., 2018b; Matsunaga et al., 2019], and
biomedical signal processing Zhang et al. [2022]. However, the foundations of the
field had not been systematically laid out yet. In particular, observed empirical
results had not been contextualized within a proper methodological framework.
For example, global and local aspects of graph-based forecasting models have

3 1.1 Goals and challenges

been discussed, for the first time, only in the context of this thesis [Cini et al.,
2023c¢|. Furthermore, methodologies to deal with the structural challenges in
adopting such models in practical applications were lacking. These challenges,
as discussed in the next section, include dealing with heterogeneous dynamics,
missing data, latent dependencies, and computational scalability issues. In this
research, we tackle such challenges and show that graph-based neural operators
allow for building effective, principled, and scalable forecasting models.

1.1 Goals and challenges
The objective of the research project can be summarized as follows.

Goal The goal of the thesis is to introduce a comprehensive methodological
framework instrumental to designing GDL methods for time series fore-
casting. We frame the problem from the appropriate perspective and
provide the necessary tools and theory. We show that graph-based process-
ing allows for building scalable global predictors while taking structural
dependencies among time series into account.

To achieve this goal, we introduce methodologies to deal with challenges inherent
to the adopted processing framework. Said challenges can be detailed as follows.

Ch. 1: Local effects. Time series in a collection might be heterogeneous and
characterized by specific dynamics (local effects) not easily captured by
a global model. This issue might be addressed by specializing graph-
based forecasting models to such dynamics, which, however, makes the
transferability of the learned model to different sensor networks more
challenging.

Ch. 2: Missing data. Missing data and intermittent observations (across
both time and space) are inherent to any application involving a network
of sensors. This makes the processing challenging, particularly in those
applications characterized by extremely sparse observations.

Ch. 3: Latent graph learning. Available relational information can be in-
accurate, inadequate, or completely missing. Exploiting relational archi-
tectures in such a setting requires learning graphs from data.

Ch. 4: Scalability. In real-world applications, tens of thousands of sensors
acquire data at high frequency. Processing the resulting observations

4 1.2 Contributions

Challenges Graph deep learning for time series forecasting

History Predictions
Local dynamics
Missing data
@ Graph learning
Scalability

ouds
x

time

Figure 1.1. Outline of the research project highlighting the research goal and related
challenges.

over both time and space has a high computational cost. Effectively ex-
ploiting the available spatiotemporal dependencies can then be extremely
challenging and requires ad-hoc scalable operators.

A schematic outline of the project, its goal, and associated challenges is provided
in Figure 1.1. To address each challenge, we designed several graph-based
methodologies for time series analysis. The following section summarizes the
main contributions of the thesis.

1.2 Contributions

In this research, we proposed GDL methods for time series forecasting addressing
the foundations of the field. The following briefly details the main contributions;
for each conceptual contribution, we report the associated reference papers.

Graph deep learning for time series forecasting We developed novel
methods and techniques to build, understand, and scale graph-based predictors,
i.e., methods to process and forecast collections of correlated time series given
graph-based input representations. In particular, we provided a formalization
of the problem settings and the associated graph-based representations and pre-
dictors. We discussed available design choices and their implications, providing
guidelines to address associated challenges. This has been the overreaching goal
of the thesis, and the main results of the research have been summarized in the
following tutorial paper.

5 1.2 Contributions

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph
Deep Learning for Time Series Forecasting. arXiv preprint arXiv:2310.15978,
2023b

Global-local graph-based forecasting Concerning (Challenge 1), we
developed methodologies to address local effects and transfer learned models to
different node sets. In particular, we considered the problem of learning graph-
based forecasting architecture combining shared global components with local
processing blocks, i.e., modules with node-specific parameters. The associated
techniques and trade-offs were introduced and discussed in the context of global
and local models for time series forecasting. In particular, we discussed and
addressed the implications of introducing local components in both transductive
and transfer learning scenarios. The results of this research has been presented
in the following work.

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming
Local Effects in Graph-based Spatiotemporal Forecasting. Advances in
Neural Information Processing Systems, 2023c

Graph deep learning for time series imputation Within the thesis,
we pioneered several state-of-the-art GDL methodologies for missing data
imputation (Challenge 2) tackling the problem of processing irregular time
series and sparse observations. The introduced methods exploit graph-based
representations to reconstruct missing data by exploiting available observations
at the target time series and neighboring nodes. In particular, we introduced a
bidirectional recurrent architecture [Cini et al., 2022b] and a follow-up attention-
based model [Marisca et al., 2022], complementing and addressing the limitations
of the former. Our work opened up a line of research, i.e., that of graph-based
neural imputation, which is currently very active and represents the state of
the art in several applications. These methodologies have been introduced in
the following papers.

e Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the G_ap_s:
Multivariate Time Series Imputation by Graph Neural Networks. In
International Conference on Learning Representations, 2022b

e Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to Reconstruct
Missing Data from Spatiotemporal Graphs with Sparse Observations. In
Advances in Neural Information Processing Systems, 2022

6 1.2 Contributions

e Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir Gusev, and
Cesare Alippi. Graph-based Virtual Sensing from Sparse and Partial
Multivariate Observations. In International Conference on Learning
Representations, 2024

Score-based latent graph learning We tackled the problem of learning
latent graph structures to process sets of time series with no prior relational in-
formation attached (Challenge 3). In particular, we introduced methodologies
to learn distributions over graphs while keeping downstream message-passing
computations sparse and efficient at both inference and training time. We
achieved this result by introducing novel variance-reduced score-based esti-
mators to learn the parameters of a probabilistic model embedding sparsity
priors. The resulting graph learning framework has also then allowed us to
introduce state-space models where input, outputs, and states are represented as
graphs [Zambon et al., 2023]. The methodology and the associated theoretical
and technical results have been presented in the following journal paper.

e Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning
from spatiotemporal time series. Journal of Machine Learning Research,
24(242):1-36, 2023d

Scalable graph-based forecasting Regarding the scalability challenge (Chal-
lenge 4), we proposed a scalable forecasting architectures combining a propa-
gation process on the graph structure and deep randomized recurrent neural
networks (RNNs). The introduced architecture extracts spatiotemporal repre-
sentations without requiring training; such representations can be precomputed
and then sampled as if they were i.i.d. to train a decoder to map them to
predictions. This precomputation strategy makes the cost of a training step
independent of graph size and sequence length. The associated paper won
the best paper award at the most prominent workshop on processing dynamic
relational data.

e Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi.
Scalable Spatiotemporal Graph Neural Networks. Proceedings of the 37th
AAAI Conference on Artificial Intelligence, 2023a

Graph-based hierarchical forecasting Besides addressing the identified
challenges, we also made a first step toward graph-based models operating at
adaptive spatial resolution. In particular, we introduced a methodology unifying

7 1.3 Publications and dissemination

graph-based forecasting with hierarchical time series processing. The resulting
framework allows for operating on aggregates rather than on single time series,
thus allowing for modeling higher-order structures. The mechanism used to
group (cluster) time series is learned directly by exploiting a self-supervised
training mechanism. This end-to-end approach combines relational and hier-
archical inductive biases into a single framework and allows for forecasting
collections of time series while clustering them.

e Andrea Cini, Danilo Mandic, and Cesare Alippi. Graph-based Time
Series Clustering for End-to-End Hierarchical Forecasting. International
Conference on Machine Learning, 2024

Software Most of the methodologies designed within the thesis have been
published together with open-source implementations of the associated time
series processing pipelines. Furthermore, we developed and open-sourced
Torch Spatiotemporal |, a software library for prototyping STGNNs and pro-
cessing time series collections with relational inductive biases (see Appendix A).

e Andrea Cini and Ivan Marisca. Torch Spatiotemporal, 2022. URL https:
//9ithub.com/TorchSpatiotemporal/tsl

Applications The methods developed during the project have found several,
practical, real-world applications in collaboration with Siemens (Ziirich) and
DXT Commodities (Lugano). In particular, we applied GDL methods to
process data coming from sensor networks in smart grid and load forecasting
applications and, more recently, to the processing of biomedical data.

1.3 Publications and dissemination

Within the thesis, I co-authored 17 papers. Most of these have been published
in the top venues of the field such as NeurIPS [Marisca et al., 2022; Cini et al.,
2023c¢|, ICML [Cini et al., 2024|, ICLR [Cini et al., 2022b; De Felice et al.,
2024, AAAT |Cini et al., 2023a], JMLR [Cini et al., 2023d; D’Eramo et al.,
2021], TMLR [Butera et al., 2024], and other international conferences and
journals [Cini et al., 2020; Eandi et al., 2022; Cini et al., 2022a; Ferretti et al.,
2022; Efkarpidis et al., 2023|; the remaining papers are currently under review
or in the process of being submitted [Cini et al., 2023b; Zambon et al., 2023;
Marzi et al., 2023]. The research on scalable STGNNs [Cini et al., 2023a],
later published at AAAI, won the best paper award at the TGL workshop at

https://torch-spatiotemporal.readthedocs.io/en/latest/
https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl

1.3 Publications and dissemination

NeurIPS 2022, which is the most prominent workshop on the application of
GDL to temporal data. I have organized a on graph deep learning for
time series forecasting at ECML PKDD 2023 and given talks on my work in
both industrial and academic settings. The following is the list of the papers I
worked on during my PhD. The papers that constitute the core of the thesis
have already been highlighted in Section 1.2; the full publication list is reported

here.

Full publication list

Journal papers

1.

Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning
from spatiotemporal time series. Journal of Machine Learning Research,
24(242):1-36, 2023d

Carlo D’Eramo, Andrea Cini, Alessandro Nuara, Matteo Pirotta, Cesare
Alippi, Jan Peters, and Marcello Restelli. Gaussian Approximation for
Bias Reduction in Q-Learning. Journal of Machine Learning Research,
22:1-51, 2021

. Luca Butera, Andrea Cini, Alberto Ferrante, and Cesare Alippi. Object-

Centric Relational Representations for Image Generation. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856

Lorenzo Ferretti, Andrea Cini, Georgios Zacharopoulos, Cesare Alippi,
and Laura Pozzi. Graph neural networks for high-level synthesis design
space exploration. ACM Transactions on Design Automation of Electronic
Systems, 28(2):1-20, 2022

. Nikolaos A Efkarpidis, Stefano Imoscopi, Martin Geidl, Andrea Cini,

Slobodan Lukovic, Cesare Alippi, and Ingo Herbst. Peak shaving in
distribution networks using stationary energy storage systems: A Swiss
case study. Sustainable Energy, Grids and Networks, 34:101018, 2023

Conference papers

6. Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the G_ap_s:

Multivariate Time Series Imputation by Graph Neural Networks. In
International Conference on Learning Representations, 2022b

https://gmlg.ch/tutorials/graph-based-processing/ecml-2023

1.3 Publications and dissemination

10.

11.

12.

13.

14.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming
Local Effects in Graph-based Spatiotemporal Forecasting. Advances in
Neural Information Processing Systems, 2023c

. Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi.

Scalable Spatiotemporal Graph Neural Networks. Proceedings of the 37th
AAAI Conference on Artificial Intelligence, 2023a

. Andrea Cini, Danilo Mandic, and Cesare Alippi. Graph-based Time

Series Clustering for End-to-End Hierarchical Forecasting. International
Conference on Machine Learning, 2024

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to Reconstruct
Missing Data from Spatiotemporal Graphs with Sparse Observations. In
Advances in Neural Information Processing Systems, 2022

Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir Gusev, and
Cesare Alippi. Graph-based Virtual Sensing from Sparse and Partial
Multivariate Observations. In International Conference on Learning
Representations, 2024

Andrea Cini, Carlo D’Eramo, Jan Peters, and Cesare Alippi. Deep
reinforcement learning with weighted Q-Learning. The Multi-disciplinary
Conference on Reinforcement Learning and Decision Making (RLDM),
2022a

Andrea Cini, Slobodan Lukovic, and Cesare Alippi. Cluster-based aggre-
gate load forecasting with deep neural networks. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE, 2020

Simone Eandi, Andrea Cini, Slobodan Lukovic, and Cesare Alippi. Spatio-
Temporal Graph Neural Networks for Aggregate Load Forecasting. In
2022 International Joint Conference on Neural Networks (IJCNN), pages
1-8. IEEE, 2022

Preprints

15.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph
Deep Learning for Time Series Forecasting. arXiv preprint arXiv:2310.15978,
2023b

10 1.4 Outline

16. Daniele Zambon, Andrea Cini, Lorenzo Livi, and Cesare Alippi. Graph
state-space models. arXiv preprint arXiw:2301.017/1, 2023

17. Tommaso Marzi, Arshjot Khehra, Andrea Cini, and Cesare Alippi. Feudal
Graph Reinforcement Learning. arXiv preprint arXiv:2304.05099, 2023

1.4 OQOutline

In more detail, the thesis is structured as follows.

Chapter 2 introduces notation and problem settings. In particular, the
section focuses on the problem of forecasting correlated time series and on related
deep learning methods for time series forecasting. We provide a categorization of
the forecasting approaches and discuss the main limitations of existing methods.

Chapter 3 presents the proposed graph-based forecasting framework by
introducing the associated representations and proposing a taxonomy of STGNN
architectures. We then discuss the available design choices and their implications
with respect to existing methods. Finally, we provide an assessment of STGNNs
in the context of global and local methods for time series forecasting.

Chapter 4 introduces the reference benchmark datasets used throughout the
thesis and reports the results of an empirical evaluation of reference architectures.

Chapter 5 discusses the problem of accounting for local dynamics in time
series collection and introduces hybrid global-local graph-based forecasting
architectures. Furthermore, we address the introduced methodologies in the
context of transfer learning.

Chapter 6 discusses the problem of dealing with missing data and introduces
models for reconstructing the missing observations.

Chapter 7 addresses the problem of efficiently learning latent graph struc-
tures by introducing ad-hoc estimators and learning architectures.

Chapter 8 discusses the computational scalability of standard GDL fore-
casting architectures and introduces a scalable alternative based on reservoir
computing and precomputed representations.

Chapter 9 presents a novel methodology unifying hierarchical and graph-
based forecasting to obtain predictors able to predict the input time series while
clustering them.

Chapter 10 draws final considerations and summarizes the main out-
comes of the thesis. Finally, directions and perspectives for future research are
presented and discussed.

Chapter 2

Forecasting correlated time series

This chapter introduces the reference problem settings for the thesis. In par-
ticular, we consider the problem of forecasting collections of correlated time
series, i.e., time series, possibly multivariate, that are correlated among each
other. Differently from generic collections of time series that might share some
similarity, in correlated time series, observations at related sequences allow
for reducing the uncertainty of the forecasts, i.e., for making more accurate
predictions. Section 2.1 introduces the scenarios under which the methodologies
introduced in the thesis operate. Then, Section 2.2 defines the forecasting
problem and a broad model family of point predictors addressing it. Section 2.3
introduces a key distinction within time series forecasting methodologies by
defining global and local model archetypes. Performance metrics and model
selection procedures are presented in Section 2.4. Finally, related work is
discussed at length in Section 2.5.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph
Deep Learning for Time Series Forecasting. arXiv preprint arXiv:2310.15978,
2023b

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming
Local Effects in Graph-based Spatiotemporal Forecasting. Advances in
Neural Information Processing Systems, 2023c

e Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning
from spatiotemporal time series. Journal of Machine Learning Research,
24(242):1-36, 2023d

11

12 2.1 Problem settings

X, Xt Ui Utir

Target time series
Exogenous variables
Static attributes

t t I 4|—|—|—|—;—|—|—|—|—;—|—’
time t t+T time t t+T

Figure 2.1. Correlated time series with exogenous variables and static attributes.

2.1 Problem settings

This section introduces the reference operational settings. Chapter 3 will extend
the base scenario described here. Notably, several of the assumptions made
in the following will be relaxed and challenged in Section 3.1.1. Differences in
setup and additional assumptions adopted by methodologies introduced in later
chapters will be made explicit whenever required.

2.1.1 Correlated time series

Consider a collection, denoted as D, of N regularly and synchronously sampled
correlated time series. The i-th time series is composed by a sequence of d,-
dimensional vectors ¢ € R% acquired at each time step ¢ from sensors! with
d, channels. Time series are assumed to be homogenous, i.e., characterized
by the same variables (observables). Matrix X; € RV*4 denotes the stacked
N observations at time ¢, while X;; 7 indicates the sequence of observations
within time interval [t, ¢+ T'); with the shorthand X, we indicate observations
at time steps up to t (excluded). Exogenous variables (i.e., external covariates)
associated with each time series are denoted by U, € R¥*% while static
(time-independent) attributes are grouped in matrix V€ R¥*%_ Figure 2.1
summarizes the available data. We use tuple &X; = (X, Uy, V') to denotes the
observed variables associated with time step t.

System model We model each (multivariate) observation as generated by a
time-invariant stochastic process such that

x, ~ p' (x| X, Uy) (2.1)

'Here the term sensor has to be considered in a broad sense, as an entity producing a
sequence of observations over time.

13 2.1 Problem settings

in particular, we assume the existence of a generic predictive causality a la
Granger |Granger, 1969], i.e., we assume that forecasts for a single time series
can benefit — in terms of accuracy — from accounting for the past values of (a
subset of) other time series in the collection. These dependencies can vary in
nature, e.g., from mere correlations to stronger functional constraints. Note
that time series {z!}; might be generated by a different stochastic process, i.e.,
in general, p* # p’ if i # j. In other words, in general, each time series cannot
be considered as an i.i.d. sample drawn from the same process.

Terminology In the sequel, the term spatial refers to the dimension of
size N, that spans the time series collection, e.g., we will talk about spatial
dependendencies to indicate dependencies among different time series. In the
case of time series acquired from physical sensors, the term spatial reflects the
fact that each time series might correspond to a different physical location.
Analogously, we will talk about relational dependency to indicate pairwise
dependencies among pairs of correlated time series. We will use the term sensor
to indicate the entities generating the observed values over time.

Example 1. Consider a sensor network monitoring the speed of vehicles at
crossroads. In this case, X.; refers to past traffic speed measurements sampled
at a certain frequency. Exogenous variables Uy, may account for time-of-the-
day and day-of-the-week identifiers, and the current weather conditions. The
attribute matrix V' collects static features related to the sensor’s position, e.g.,
the type of road the sensor is placed in or the number of lanes. In this scenario,
time series in the collection would likely exhibit strong correlations, e.g., due to
the traffic flow and how the different road segments of the traffic network are
connected.

Example 2. Consider a modern smart metering infrastructure, with sensors
measuring energy consumption at different households and facilities. Time
series X1, correspond to sensor readings acquired over time w.r.t. each user.
Exogenous variables Uy, as in the previous example, may encompass weather
conditions and calendar features. Static attributes V' might indicate the type
of customer (e.g., private or business) and type of contract. In this context,
dependencies among time series might be due to relationships among users,
e.g., private customers working for the same company, which would affect the
observed energy consumption patterns.

14 2.2 Multi-step time series forecasting

2.2 Multi-step time series forecasting

We address the multi-step-ahead time-series forecasting problem [Hyndman
and Athanasopoulos, 2018; Benidis et al., 2022], i.e., we are interested in
predicting, for each time step ¢t and some forecasting horizon H > 1, the h
step-ahead observations X, for all h € [0, H) given a window of available
W > 1 past observations. In particular, we are interested in learning a model
pe approximating the unknown conditional probability such that

o (xin|Xi-wit, Usranar,) = 0 (@14 | Xet, Urpnin) (2.2)

where 0 indicates the learnable parameters of the model which may or may
not be specialized w.r.t. the i-th time series (see Section 2.3). Note that the
considered models usually approximate the target distribution by conditioning
the forecasts on a limited window of observations rather than the full history.
Not all the exogenous variables U<;;5+1 might be available up to time step
t + h in practical applications and the conditioning would have to be adapted
accordingly?.

Learning a model means fitting parameters @ to the available observations.
In general, one might be interested in probabilistic forecasts, i.e., in modeling the
full (conditional) probability distribution p’(-). In the following, we will focus
on point forecasts, i.e., on predicting specific values associated with the process
such as, for example, the expected value of future observations. In particular,
to keep the scope of the dissertation contained, the problem of estimating the
uncertainty of the forecast will not be covered in-depth.

2.2.1 Point predictors

Limiting our analysis to point predictions and selecting the expected value as a
target, we can consider predictive model families F(- ;8) such that

)/(\t:t+H = j_"(Xt—W:ta Uiitrrii; 9) s.t. jX\t:t+H ~E [Xt:t+H] . (2-3>

Model F (-;0) allows for several designs; for example, learnable parameters
could be shared among time series which can be forecast individually — e.g.,
as @l = F(x!_ 4, ...;0) — or by considering the input as a single large mul-
tivariate time series. As one would expect, adopting any of these options

2Exogenous variables might contain, for example, actual weather conditions (available up
to time step ¢) or estimates, e.g., weather forecasts, available for future time steps as well (up
to time step t + h).

15 2.3 Global and local models

results in radically different modeling archetypes. Section 2.3 will discuss the
different model families in-depth and 2.5 will present a selection of the resulting
forecasting architectures.

Model fitting Parameters @ can be learned by minimizing a cost function
¢(-) on a training set, i.e.,

T

~ . 1 —_~
0 = arg;mn T ZE <Xt:t+H7 Xt:t+H>) (2.4)
t=1
where the cost is the squared error
— 1 a-1 2
¢ <Xt:t+Ha Xt:t+H) = N7 Z “£i+h - "Bi+hH - (2.5)
N i i=1 h=0 2

Minimizing the squared loss results in forecasts of the mean (see Equation 2.3);
considering different cost functions allows for obtaining point predictions of other
values. For instance, forecasts of the median can be obtained by minimizing the
absolute error, while other quantiles of the target distribution can be estimated
by relying on the pinball loss [Koenker and Hallock, 2001]. Notably, forecasting
multiple quantiles at the same time is a simple method to obtain probabilistic
predictions [Wen et al., 2017; Gasthaus et al., 2019].

2.3 Global and local models

Having identified the reference settings, we delve into the problem of designing a
forecasting model. We start by addressing a key distinction among the existing
model archetypes.

2.3.1 Global and local predictors

A time series forecasting model is called global if its parameters are fitted to a
group of time series (either univariate or multivariate); conversely, local models
are specific to a single (possibly multivariate) time series. In different terms, a
global model is trained to make predictions by learning from a set of time series,
possibly generated by different stochastic processes, without learning any time-
series-specific parameter. Conversely, a local model is obtained by minimizing
the forecasting error on observations from a single time series. Both global and
local models can be univariate or multivariate. More formally, following Benidis

16 2.3 Global and local models

et al. [2022] and considering models that process one time series at a time, a
sequence-level local model would predict each target time series fori =1,..., N
as

iﬁh = fi (mifW:z‘J uLW:tJrhﬂa Ui§ ai) (2-6)

where @ indicates the model’s parameters fitted on the i-th time series. Dif-
ferently, in a global model, parameters would be shared among time series,
i.e,

ﬂf?iJrh =f (mf‘:fW:U uLW:tJrhﬂa ’Ui§ 9) (2-7)

where parameters @ can be learned by minimizing the cost function w.r.t. the
complete time series collection (see Equation 2.4). In the context of neural
networks, both models can be implemented by using any sequence modeling
architecture, e.g., a RNN [Hewamalage et al., 2021| or a temporal convolutional
network (TCN) [Oord et al., 2016; Bai et al., 2018|.

Trade-offs The advantages of global models have been discussed at length
in the time series forecasting literature [Salinas et al., 2020; Januschowski
et al., 2020; Montero-Manso and Hyndman, 2021; Benidis et al., 2022| and
are mainly ascribable to the availability of large amounts of data that enable
the use of models with a higher capacity w.r.t. single local models. Indeed, as
noted by Montero-Manso and Hyndman [2021], given a large enough window of
observations and model complexity, if a global model is a universal function
approximator it could in principle output predictions identical to those of a
set of local models individual to each time series. Training a single global
model increases the effective sample size available to the learning procedure
and, consequently, allows for exploiting models with a higher model complexity
preventing overfitting. Finally, being trained on a set of time series, global
models can extrapolate to related but unseen time series, i.e., they can be used
in inductive learning scenarios where target time series (i.e., the ones to predict)
can be potentially different from those in the training set3. Although the
advantages of global models are evident, they might struggle to account for the
peculiarities of each time series in the collection and might require impractically
long observation windows and large memory capacity [Montero-Manso and
Hyndman, 2021; Cini et al., 2023¢|]. Local models, conversely, naturally deal
with such peculiarities and local dynamics. As a result, to enjoy the best of

3Such setting is relevant in many practical application domains and also known as the
cold-start scenario [Benidis et al., 2022]; see Chapter 5 for more discussion on the topic.

17 2.3 Global and local models

both worlds, several hybrid models, combining global and local components
have been proposed and analyzed (e.g., [Wang et al., 2019; Smyl, 2020; Cini
et al., 2023¢c|) and will be further discussed in Section 2.5 and Chapter 5.

2.3.2 Global and local models for correlated time series

Models in Equation 2.6 and 2.7 discard dependencies among the synchronous
time series in the collections. In the case of local models, it is possible to
consider the other series in the collection as additional exogenous variables and
build multiple-input-single-output (MISO) models such that

@iy, = (Xewa, .5 0°). (2.8)

Extending global models to correlated time series is not trivial. We could
consider a multiple-input-multiple-output (MIMO) model simply regarding the
input as a single multivariate time series as

Xon=/f (Xi—wit,-.-:0). (2.9)

However, the resulting predictor is essentially a local model operating on a
highly-dimensional multivariate time series; models of this kind would not be
able to exploit advantages coming from the global perspective as there would
be only one such time series to learn from. Furthermore, predictors belonging
to any of these two model families (Equation 2.8 and 2.9) would not be able
to deal with new time series being added to the collection and would have to
handle the high dimensionality of X.

Global models for correlated time series Given the above, we are inter-
ested in global forecasting models able to process any subset of time series (po-
tentially of variable size) from the collection while keeping parameters shared
and taking dependencies among them into account. More formally, given a
subset of target time series S C D and denoted as Y,® € RVs*4= the resulting
stack of observations at each time step ¢, we are interested in global models
such that

YS, =F (Y;0) VSeP(D) (2.10)

where P (D) denotes the power set of the time series collection D. Models
belonging to this family of forecasting architectures need a mechanism to share
weights among the individual time series (thus keeping the model global) and,
at the same time, exploit cross-correlations among them. Deep set (DS) [Zaheer

18 2.4 Performance metrics and model selection

et al., 2017] and, in particular, Transformer [Vaswani et al., 2017; Grigsby
et al., 2021] architectures offer a possible solution that we will discuss further
in Section 2.5. However, they do not incorporate any available prior relational
information into the processing, i.e., they do not exploit known existing (spatial)
dependencies; a limitation that will motivate the framework introduced in
Chapter 3. Section 2.5 delves into actual implementations of F(- ;), focusing
on deep learning methods for time series forecasting and surveying the state of
the art.

2.4 Performance metrics and model selection

The quality of a forecasting model is primarily assessed in terms of its forecasting
accuracy on a test set. As in the standard machine learning pipeline, the test
set is made of observations that have been held out from the set used for
training the model. In time series forecasting, data splits are usually obtained
sequentially, by using observations up to a certain time step for training and
the remaining for testing. The best model (among many) is usually selected
by (statistically) comparing their performance on the test set [Hyndman and
Athanasopoulos, 2018|.

Metrics One might consider many performance metrics to evaluate point
forecasts [Hyndman and Koehler, 2006; Gneiting, 2011]. Among scale-dependent
metrics, the mean absolute error (MAE) is a commonly used performance metric
in time series forecasting and is computed as

T-1

N
__ 1
MAE (Xiir, Xeasr) = e D)

T=

ii+7 - mi—&-T 1 (211)

12
Tt+7‘

where ||&} — x}||, is the 1-norm of the predictions residual r{ = &} — x. Other
common absolute metrics are the mean squared error (MSE) computed by
considering the square of the 2-norm of the residuals instead of their 1-norm,
and the root mean squared error (RMSE) (the square root of the MSE). Among
scaled matrics, the mean absolute percentage error (MAPE) weights the 1-norm
of the residuals by the 1-norm of the observed values before averaging them.
The mean relative error (MRE) instead scales the sum of absolute errors by the
sum of the observations. Details and exact formulas to compute performance
metrics are reported in Appendix B.

19 2.5 Related work

Testing for residual correlations Besides performance-based evaluation,
the fitness of a model can be assessed by checking for correlations among
residuals. The underlying principle is that correlated residuals indicate the
presence of structural information not captured by the model. Ad-hoc statistical
hypothesis tests can be designed to detect such correlations in time series
analysis [Durbin and Watson, 1950; Ljung and Box, 1978; Box et al., 1970].
However, accounting for correlations among both spatial and temporal residuals
makes the process more challenging due to scalability issues and often requires
ad-hoc techniques and priors [Zambon and Alippi, 2022, 2023|.

2.5 Related work

There is a wide literature on how to build effective time series forecasting
models. Statistical methods constitute powerful techniques in the toolbox of the
practitioner [Box et al., 1970; Hamilton, 2020; Hyndman and Athanasopoulos,
2018]. These include, for example, ARIMA models [Box et al., 1970], exponential
smoothing methods [Hyndman et al., 2008] and state space models [Durbin and
Koopman, 2012]. These models often involve only a few trainable parameters,
are usually fitted as local predictors, and can easily incorporate prior structural
information (i.e., trends and seasonalities) [Montero-Manso and Hyndman,
2021|. However, being local models, as discussed in Section 2.3, fitting them
to large groups of time series can be challenging due to scalability and sample
complexity issues [Montero-Manso and Hyndman, 2021; Benidis et al., 2022].
Conversely, global approaches can enjoy a larger sample size that allows for
adopting more complex models. In this context, deep learning methods are
the natural candidate solution and have shown remarkable performance in
practical and relevant forecasting applications |Benidis et al., 2022]. Given
these considerations and the settings we are interested in, the following sections
will mainly focus on deep learning forecasting methods.

We start by going through the main sequence modeling blocks adopted in
deep learning architectures in Section 2.5.1 and continue by surveying a selection
of modern neural forecasting methods in Section 2.5.2. The following is intended
as an overview of widely popular architectures. Methods specific to each of
the challenges addressed in the thesis will be discussed in the corresponding
chapters.

20 2.5 Related work

2.5.1 Deep learning architectures for sequence modeling

Several deep learning architectures for sequence modeling have been studied in
the literature.

Recurrent neural networks RNNs [Elman, 1990; Lin et al., 1996; Hochre-
iter and Schmidhuber, 1997; Tino et al., 2004; Cho et al., 2014] are and have
been among the most widely adopted models for sequence modeling. Standard
Elmann RNNs [Elman, 1990], usually trained with backpropagation through
time [Werbos, 1990], process sequences by updating a state representation at
cach step with recurrent connections. Gated RNNs [Hochreiter and Schmid-
huber, 1997; Cho et al., 2014] improve upon Elmann RNNs by introducing
gates to control and regulate the state update mechanism with the intent of
mitigating issues such as vanishing and exploding gradients [Hochreiter and
Schmidhuber, 1997; Bengio et al., 1994]. Conversely, nonlinear autoregres-
sive exogenous (NARX) models [Chen et al., 1990; Lin et al., 1996] extend
the family of traditional autoregressive models by exploiting multilayer per-
ceptrons (MLPs) with recurrent connections from the output to the input of
the network. A radically different approach is instead adopted by reservoir
computing architectures [Lukosevicius and Jaeger, 2009], such as echo state
networks (ESNs) [Jaeger, 2001]. In ESNs, the weights of the RNN are randomly
initialized and never trained. The idea behind this approach is to feed the
input signal into a high-dimensional, randomized, and non-linear dynamical
system, whose internal state can embed the input dynamics. In particular,
such randomized RNNs are usually designed such that the state at each time
step is asymptotically independent of the initial conditions?. Although RNNs
are currently overshadowed by attention-based architectures [Vaswani et al.,
2017], modern architectures have shown promising results even on tasks usually
dominated by Transformers, such as processing very long sequences [Orvieto
et al., 2023; Beck et al., 2024].

Temporal convolutional networks TCNs [LeCun and Bengio, 1998; Oord
et al., 2016; Gehring et al., 2017; Bai et al., 2018], exploiting 1-d convolutional
filters, are a popular alternative to RNNs. In particular, input sequences are
usually padded to ensure that representations at a certain time step depend
on past values only [Bai et al., 2018]. The main advantage of TCNs over
RNNs is that computations can be easily parallelized on GPUs; furthermore,
dilated convolutional kernels allow the receptive field of each filter to grow

4This requisite is known as echo state property [Yildiz et al., 2012].

21 2.5 Related work

exponentially at each layer [Bai et al., 2018]. These properties have made
TCNs especially popular for processing signals acquired at high sampling rates,
such as raw audio [Oord et al., 2016; Shen et al., 2018|. More recently, fully
convolutional architectures have yielded outstanding results in processing long
sequences [Fu et al., 2023; Li et al., 2023; Shi et al., 2023] challenging, in their
turn, the performance of attention-based alternatives also in language processing
tasks [Poli et al., 2023].

Attention-based models Transformers [Vaswani et al., 2017] have become
one of the most successful sequence modeling architectures and have been
applied in many domains from processing language [Brown et al., 2020] to even
images [Dosovitskiy et al., 2021; Khan et al., 2022|. Transformers, based on
attention [Bahdanau et al., 2015|, update each token’s representation by aggre-
gating the representations of all other tokens in the set, weighted by normalized
and adaptive attention scores. Since scores are computed directly among each
pair of tokens, Transformers can avoid the memory bottlenecks and vanishing
gradients of recurrent architectures [Vaswani et al., 2017]. Furthermore, being
a feed-forward architecture, computation can easily be parallelized. The major
drawback of attention operators is their space and time complexity, which is
quadratic in the number of tokens. This has pushed the research community
toward investigating more efficient, ideally linearized, attention operators [Tay
et al., 2022]. The need for scalable sequence modeling also motivates the ef-
forts to revamp recurrent and convolutional architectures discussed in previous
paragraphs.

Neural structured state-space models Deep structured state-space mod-
elss (SSMs) [Gu et al., 2022a] offer an alternative sequence modeling paradigm
based on layers associating a continuous-time linear SSM to each feature. Deep
SSMs can outperform standard Transforms in modeling long-range dependen-
cies [Gu et al., 2022a] while being more computationally efficient. Thanks to
proper reparametrizations, SSMs models can operate both as a TCN, which
allows for efficient training, and autoregressively (as an RNN) which enables
fast inference. Since their introduction, SSMs architectures have been improved
and streamlined [Gupta et al., 2022; Gu et al., 2022b; Zhang et al., 2023] and
have become a valid alternative to Transformers in many applications [Gu and
Dao, 2023].

These sequence modeling operators, together with MLPs, constitute the
backbone of most time series forecasting architectures. Nonetheless, directly

22 2.5 Related work

using these basic blocks is often not enough. Processing architectures need to
be tailored to forecasting time series incorporating purposely designed operators
and inductive biases. The following section discusses a selection of relevant
approaches from the literature.

2.5.2 Neural forecasting architectures

Deep learning architectures have a long history of both successes |Benidis
et al., 2022] and failures [Zhang et al., 1998] in time series forecasting. As
already discussed, one of the main limiting factors has been the number of
available samples when learning a model for a single, short, seasonal time
series [Hewamalage et al., 2021]: a setting where traditional statistical methods
often outperform more complex model architectures. The successes of deep
learning in time series forecasting instead mostly come from applying the global
approach [Salinas et al., 2020; Bandara et al., 2020; Oreshkin et al., 2020; Benidis
et al., 2022]. The archetypal deep learning forecasting architecture consists of a
stack of neural processing blocks encoding each (potentially preprocessed) time
series. Representations can then be fed into a simple readout for outputting
a multi-step point forecast [Oreshkin et al., 2020]. Alternatively, they can
be processed by a more complex decoder that could provide, for example,
probabilistic predictions [Salinas et al., 2020], or utilize the network’s output
to parameterize subsequent processing steps [Smyl, 2020; Rangapuram et al.,
2018|. This paradigm has seen many implementations.

Forecasting architectures Among popular global predictors, the DeepAR
model [Salinas et al., 2020], consists of a single RNN trained as a univariate
predictor on data coming from collections of related time series. The output of
the RNN cells is used to parameterize a probability distribution (e.g., Gaussian
or negative binomial). Other popular methods, combine standard encoding
layers with methods inspired by structured time series processing methods.
For example, Rangapuram et al. [2018] uses the output of a stack of RNNs
to parameterize a state-space model paired with a Kalman filter [Kalman,
1960]. More flexible probabilistic predictors have been obtained by combining
sequence modeling architectures with quantile regression [Wen et al., 2017;
Gasthaus et al., 2019] and generative models such as normalizing flows [Rasul
et al., 2021b; Papamakarios et al., 2021| and diffusion models [Rasul et al.,
2021a; Alcaraz and Strodthoff, 2023]. Across the different architectures, several
approaches have obtained notable results by combining global models with
local learnable components. For example, Smyl [2020] won the M4 forecasting

23 2.5 Related work

competition [Makridakis et al., 2020] by combining a global RNN with local
exponential smoothing models fitted on each time series. Wang et al. [2019]
introduced an architecture combining global RNNs with local models accounting
for local random effects. Regarding the implementation of the encoding blocks,
RNNs have historically been among the most widely adopted models [Mandic
and Chambers, 2001; Wen et al., 2017; Salinas et al., 2020; Hewamalage et al.,
2021]. Streamlined feed-forward architectures consisting of deep stacks of resid-
ual MLPs have also obtained remarkable results [Oreshkin et al., 2020; Challu
et al., 2023]. TCNs, as mentioned in the previous section, constitute the core
processing layers of many state-of-the-art forecasting architectures [Borovykh
et al., 2017; Chen et al., 2020; Gasparin et al., 2022; Wu et al., 2023|. Trans-
formers, and attention-based architectures in general, have become popular
for modeling temporal dependendencies in time series |Li et al., 2019; Lim
et al., 2021; Zhou et al., 2021; Nie et al., 2023|, especially when large amounts
of data are available [Kunz et al., 2023]. However, some skepticism on the
effectiveness of fully attention-based forecasting architectures remains [Zeng
et al., 2023]. Deep SSMs have also started being applied to forecasting [Alcaraz
and Strodthoff, 2023] with the introduction of ad-hoc modifications for model-
ing autoregressive processes Zhang et al. [2023]. Finally, another trend worth
discussing is that of foundation models for time series |Liang et al., 2024], i.e.,
models trained on large amounts of data engineered for being applied to forecast
new time series zero-shot or by fine-tuning (part of) the model. These models
have been shown capable of achieving zero-shot performance comparable to
that of state-of-the-art general-purpose forecasting architectures fitted to the
target time series [Garza and Mergenthaler-Canseco, 2023; Ansari et al., 2024;
Das et al., 2024].

Models for correlated time series As discussed in Section 2.3, most state-
of-the-art architectures consist of global models that forecast each time series
individually, i.e., discarding spatial dependencies that might exist among input
time series. Considering the input as a single multivariate time series results
in local models with poor scalability and high sample complexity [Sen et al.,
2019; Cini et al., 2023c|]. Among methods tackling the problem, the DeepGLO
architecture [Sen et al., 2019] extracts a set of latent covariates from a time series
collection by temporally regularized matrix factorization |Yu et al., 2016] and
uses them as additional input to a univariate TCN processing each time series
separately. Another popular approach is that of relying on Transformers where
attention is applied along both the tempora and spatial dimensions [Grigsby
et al., 2021; Ma et al., 2019; Liu et al., 2023a]. However, spatiotemporal

24 2.5 Related work

Transformers are limited due to quadratic computational complexity potentially
w.r.t. both the number of time series and length of the input window. If input
time series can be arranged in a grid, multi-dimensional TCNs could exploit the
structure of the spatial dependencies to make the processing more scalable [Shi
et al., 2015; Tran et al., 2015]. However, this is rarely the case for data coming
from, e.g., sensor networks where the spatial coverage is sparse and sensors
are usually irregularly positioned. As we discuss in the following chapters, an
effective approach to tackling the problem is offered by graph representations
and graph neural networks [Seo et al., 2018; Cini et al., 2023b; Jin et al., 2023b)].

Chapter 3

Graph deep learning for time series
forecasting

This chapter introduces the proposed graph-based forecasting framework. Our
methodology is aimed at overcoming the limitations of the forecasting approaches
discussed in Chapter 2 by explicitly modeling relational dependencies among
time series. In particular, we introduce graph-based representations of collections
of correlated time series (Section 3.1) and the associated predictors (Section 3.2).
Section 3.3 introduces STGNNs as a forecasting architecture implementing the
framework and discusses a taxonomy of existing models. Further discussion on
the state of the art is then provided in Section 3.4.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph
Deep Learning for Time Series Forecasting. arXiv preprint arXiv:2310.15978,
2023b

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming
Local Effects in Graph-based Spatiotemporal Forecasting. Advances in
Neural Information Processing Systems, 2023c

e Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning
from spatiotemporal time series. Journal of Machine Learning Research,
24(242):1-36, 2023d

25

26 3.1 Graph-based representations for collections of time series

(r- Nodes (sensors) ------=-=--------- ' — Time series collection + Relational info r- Target variables -------------------- a

V={oo0000}
G = (X, U, &,V)

i

>
=
/%/

U, Uyir

Typically static
A
H)

Figure 3.1. Graph-based representation of a time series collection.

3.1 Graph-based representations for collections
of time series

We start by considering a collection of N correlated time series as described in
Section 2.1. Relational dependencies among the time series can be modeled to
inform the downstream processing and allow for, e.g., getting rid of spurious
correlations in the observed sequences of data.

Graph-based representation The existence of pairwise relationships among
time series can be accounted for by a (possibly dynamic) adjacency matrix
A; € {0, 1}V that encodes the (possibly asymmetric) dependencies at each
time step t. Optional edge attributes eij € R% can be associated to each non-
zero entry of A;. In particular, we denote the set of attributed edges encoding
all the available relational information by & = {((i,7),e) | Vi, j : Ai, j] # 0}.
Whenever edge attributes are scalar, i.e., d. = 1, edge set & can be simply repre-
sented as a weighted real-valued adjacency matrix A, € RY*Y . Analogously to
the homogeneity assumption for observations (Chapter 2), edges are assumed to
indicate the same type of relational dependencies (e.g., physical proximity) and
have the same type of attributes (either categorical or continuous) across the
collection. Note that for many applications (e.g., traffic networks) changes in
the topology happen slowly over time and the adjacency matrix — as well as edge
attributes — can be considered as fixed within a short window of observations,
ie., & =& and e = e¥ for all the (i, 7) pairs. As discussed in Section 3.1.1,
this representation is particularly flexible and can easily be tailored to several
problem settings and practical applications. In particular, dependencies encoded

27 3.1 Graph-based representations for collections of time series

by A; and & can be of different nature, from simple physical proximity and
correlation to more complex relationships, e.g., the similarity of products in the
retail market |Gandhi et al., 2021].

Example 3. Consider the sensor network monitoring the speed of vehicles
introduced in Example 1. A static adjacency matrix A can be obtained by
considering each pair of sensors connected by an edge — weighted by the road
distance — if and only if a road segment directly connects them. Edge weights
can be set as inversely proportional to the road distance, e.g., by considering
radial basis functions [Shuman et al., 2013]. Conversely, road closures and
traffic diversions can be accounted for by adopting a dynamic topology A;.

Example 4. Consider the smart metering infrastructure introduced in Ex-
ample 2. A (weighted) adjacency matrix A can be obtained, for example, by
modeling correlations in energy consumption patterns. In particular, A could be
obtained from a thresholded similarity matrix of scores based, e.g., on Pearson
correlation, correntropy [Liu et al., 2007|, or dynamic time warping |[Berndt
and Clifford, 1994].

Terminology and notation We use interchangeably the terms node and
sensor to indicate each of the N entities generating the time series and refer to
the node set together with the relational information as sensor network. The
tuple G, = (X4, Uy, &, V') indicates all the available information at time step t.
A graphical representation of the problem settings is shown in Figure 3.1.

3.1.1 Extensions to the reference settings

This section offers extensions to the reference problem settings by discussing
how the graph-based representation can be modified to account for peculiarities
typical of a wide range of practical applications. Further assumptions will be
challenged on Chapters 5 to 8.

New nodes, missing observations, and multiple collections It is often
the case that the time frames of the time series in the collection, although
synchronous and regularly sampled, do not overlap perfectly, i.e., some time
series might become available at a later time and there might be windows with
blocks of missing observations. For example, it is typical for the number of
installed sensors to grow over time and many applications are affected by the
presence of missing data, e.g., associated with readout and/or communication
failures which result in transient or permanent faults. These scenarios can be

28 3.2 Forecasting with relational side information

incorporated into the framework by setting /N to the total maximum number
of time series available, and, whenever needed, padding the time series appro-
priately to allow for a tabular representation of {X,};. An auxiliary binary
exogenous variable M; € {0,1}"*4 called mask, can be introduced at each
time step as G, = (X, Uy, My, &, V') to model the availability of observations
w.r.t. each node and time step. In particular, we set m![k] = 1 if k-th channel
in the corresponding observation ! is valid, and m![k] = 0 otherwise. If obser-
vations associated with the ¢-th node are completely missing at time step ¢, the
associated mask vector will be null, i.e., m! = 0. The masked representation
simplifies the presentation of concepts and, at the same time, is useful in data
reconstruction tasks (see Chapter 6). Finally, if collections from multiple sensor
networks are available, the problem can be formalized as learning from M
disjoint sets of correlated time series D = {gfj}tl Ty gfj?w Ty ,gﬁjﬁm T)
potentially without overlapping time frames. In the latter case, we assume the
absence of functional dependencies between time series in different sets and the
homogeneity of node features and edge attributes across collections.

Heterogeneous time series and edge attributes Heterogeneous sets of
correlated time series are commonly found in the real world (e.g., consider a
set of weather stations equipped with different sensory packages) and result in
collections where observations across time series in the set might correspond to
different variables. Luckily, dealing with this setting is relatively straightforward
and can be done in several ways. In particular, the masked representation
introduced in the above paragraph can be used to pad each time series to
the same dimension d,,,, and keep track of the available channels at each
node; moreover, the sensor type of each sensor can be encoded in the attribute
matrix V. If the total number of variables is too large or is expected to change
over time, one alternative strategy is to map each observation into a shared
homogenous representation (see, e.g., relational models such as [Schlichtkrull
et al., 2018]). Heterogeneous edge attributes can be dealt with analogously to
heterogeneous node features.

3.2 Forecasting with relational side information

As discussed in Chapter 2, learning forecasting models for correlated time series
as those in Equation 2.10 is challenging, and the main challenge is dealing with
all the input time series at once. Notably, accounting for possible dependencies
becomes increasingly difficult as the number of time series in the collection

29 3.3 Spatiotemporal graph neural networks

grows. Intuitively, the high dimensionality of the problem can lead to spurious
correlations among the observed time series impairing the effectiveness of the
learning procedure. To address this issue, our proposal is that of embedding
the available relational information as an inductive bias into the model. In
particular, dependencies among the time series can be used to condition the
prediction and, as discussed in Section 3.3, accounted for in the predictor
through an architectural bias. Forecasting models, then, be conditioned on
both past observations and the predefined relational structure. The considered
family of models approximates the data-generating process as

Pe ($i+h‘gt—W:t7 Ut:t+h+1) ~ Pi (mi+h{X<t7 Ut:t+h+1) . (3.1)

Notably, the conditioning on the sequence of attributed graphs G; y.; and,
in particular, on the relationships encoded in & _y .;, can localize predictions
w.r.t. the neighborhood of each node and is intended to constrain the model
to the most plausible ones. Analogously, the corresponding graph-based point
predictors operate as

-/-)(\t:t-i—H = F (Ge—w:t, Upt+n11;0) (3.2)

Graph-based predictors belonging to this family of models can implement global
models of the type discussed in Section 2.3.2 (Equation 2.10). The following
sections focus on the design of these global graph-based predictors and methods
to embed relational inductive biases [Battaglia et al., 2018| into the processing
architecture. In particular, Section 3.3 introduces a framework for designing
STGNNs able to forecast any subset of time series from the collection by
conditioning the predictions on the associated relational structure.

3.3 Spatiotemporal graph neural networks

This section introduces STGNNs [Seo et al., 2018; Li et al., 2018; Yu et al.,
2018| and the MPs operators that constitute the core processing blocks of
graph-based time series processing architectures (Section 3.3.1-3.3.3). Within
this context, we also discuss a taxonomy of the design choices available to the
practitioner when selecting a model architecture (Section 3.3.4). STGNNs are
global forecasting models where parameters are shared among the target time
series; the discussion on this fundamental aspect will take place in Section 3.3.5,
while hybrid global-local STGNNs will be to focus of Chapter 5. Finally,
Section 3.4 will then discuss graph deep learning methods for processing temporal
data in a broader context. We refer to Jin et al. [2023b] for an in-depth survey on
the existing GNN architectures across different tasks in time series processing.

30 3.3 Spatiotemporal graph neural networks

3.3.1 Message-passing neural networks

Modern GNNs [Scarselli et al., 2008; Bacciu et al., 2020; Bronstein et al., 2021]
embed architectural biases into the processing architecture by constraining the
propagation of information w.r.t. a notion of neighborhood derived from the
adjacency matrix. Most of the commonly used architectures fit into the MP
framework |Gilmer et al., 2017], which provides a recipe for designing GNN
layers; GNNs that fit within the MP framework are usually referred to as spatial
GNNs [Sperduti and Starita, 1997; Scarselli et al., 2008|, usually in opposition
to spectral GNNs, which instead operate in the spectral domain® [Bruna et al.,
2014; Wang and Zhang, 2022|. By taking as reference a graph with static node
features H° € RV* and edge set £, we consider MP neural networks obtained
by stacking MP layers that update each i-th node representation at each [-th
layer as

R+l — Up! (h“, AGGR{MSGZ (R B!, €9 }) : (3.3)

JEN (i)

where UP'(-) and MSG'(-) are respectively the update and message functions,
e.g., implemented by MLPs. AGGR{-} indicates a generic permutation invariant
aggregation function, while NV (i) refers to the set of neighbors of node i, each
associated with edge attribute e’*. In the following, we use the shorthand
H't' = MP! (Hl, 5) to indicate a MP step w.r.t. the full node set. MP GNNs
are inductive models [Ruiz et al., 2020] which can process unseen graphs of
variable sizes by sharing weights among nodes and localizing representations by
aggregating features at neighboring nodes.

Isotropic and anisotropic message passing By following Dwivedi et al.
[2023], we call isotropic those GNNs where the message function MsG' only
depends on the features of the sender node h’'; conversely, we use the term
anistropic referring to GNNs where MsG! takes both h*! and h/! as input.
For instance, a standard and commonly used isotropic MP layer for weighted
graphs (with weighted adjacency matrix A) is

JRACS §<Wllh“ + jse%% {aﬂWthj’l}), (3.4)

where W] and WY are matrices of learnable parameters, a/' = Al[j,], and £(-)
is a generic activation function. Conversely, an example of an anisotropic MP

!Note that most of the so-called spectral GNNs can be seen as special instances of MP
architectures nonetheless.

31 3.3 Spatiotemporal graph neural networks

operator, based on [Bresson and Laurent, 2017, is
m/ 7 = wie (Wi R Rl]), o = o(Wimit), (3.5)

Rt — f(Wgh“ + Sum {aﬂ'“mﬂ'%l}>, (3.6)
JEN (D)
where matrices W} € R4 W! W and Wi are learnable parameters, o(-)
is the sigmoid activation function and || the concatenation operator applied
along the feature dimension. Intuitively, isotropic MP operators compute and
aggregate messages without taking into account the representations of sender
and receiver nodes and rely entirely on the presence of edge weights to weigh the
contribution of different neighbors. Conversely, anisotropic schemes allow for
learning adaptive aggregation and message-passing schemes aware of the nodes
involved in the computation. Popular anisotropic operators exploit multi-head
attention mechanisms to learn rich propagations schemes where the information
flowing from each neighbor is weighted and aggregated after multiple parallel
transformations [Velickovi¢ et al., 2018; Vaswani et al., 2017]. We point out
that selecting the proper MP operator, i.e., choosing the architectural bias for
constraining the flow of information, is crucial for obtaining good performance
for the problem at hand. Notably, many standard isotropic filters often assume
homophily — i.e., that neighboring nodes behave similarly — and can suffer from
over-smoothing [Rusch et al., 2023].

3.3.2 Spatiotemporal message passing

STGNNSs can be designed by extending MP to aggregate, at each time step,
spatiotemporal information from each node’s neighborhood. In particular,
we model the operations as spatiotemporal message-passing (STMP) blocks
updating representations as

hy'tt = Up! (hfjt, AGGR {Mse’(hi’t, hZ el) }), (3.7)
=t jeNil) srEn s

where N; (i) indicates the neighbors of the i-th node at time step ¢ (i.e., the

nodes associated with incoming edges in &;). As in the previous case, in the

following, the shorthand H!™' = STMP" (Hét,é'gt) indicates an STMP step.

As implicit from Equation 3.7, differently from standard MP, blocks of an STMP

layer will have to integrate sequence modeling operators. The next section

provides recipes for building STGNNs based on different implementations of
the STMP blocks and on existing popular STGNN architectures.

32 3.3 Spatiotemporal graph neural networks

3.3.3 A template architecture

We consider forecasting architectures consisting of an encoding step followed by
STMP layers and a final readout mapping representations to predictions. In par-
ticular, we consider models, belonging to the family introduced in Equation 3.2,
that consists of a sequence of three blocks:

h;°, = ENCODER (z_,u}_;,v"), (3.8)
H'*! = STMP! (ngt_l,ggt_1>, [=0,....[—1 (3.9)
Ty, = DECODER <hi’f1> ui:t—i—H) : (3.10)

ENCODER(-) and DECODER(-) indicate generic encoding and readout layers
that can be implemented, as an example, as standard fully connected linear
layers, or MLPs. Note that both encoder and decoder do not perform any
propagation of information along time and space, a task which is delegated to
the stack of STMP layers. For each paradigm, we discuss associated relevant
architectures.

3.3.4 Taxonomy

We categorize STGNNSs following the template of Section 3.3.3 in time-then-
space (TTS), space-then-time (STT), and time-and-space (T&S) models. More
specifically, in a T'T'S model each series of representations hi<’?f is processed by a
sequence modeling operator, such as an RNN, before any MP operation along the
spatial dimension [Gao and Ribeiro, 2022|; STT models are similarly obtained by
inverting the order of the two operations. Conversely, in T&S models time and
space are processed in a more integrated fashion, e.g., by a recurrent GNN [Seo
et al., 2018] or by spatiotemporal convolutional operators [Yu et al., 2018|.

Time-and-space models We include in this category any STGNN in which
the processing of the temporal and spatial dimensions cannot be factorized in
two separate steps. In T&S models, representations at every node and time
step are the result of joint temporal and spatial processing, as in Equation 3.9.
To the best of our knowledge, the first T&S STGNNs have been proposed by
Seo et al. [2018], who introduced a popular family of recurrent architectures,
hereby denoted as graph convolutional recurrent neural networks (GCRNNs),
where standard fully-connected layers in (gated) RNNs are replaced by graph
convolutions [Kipf and Welling, 2017; Defferrard et al., 2016]. As an example, by
considering a gated recurrent unit (GRU) cell [Cho et al., 2014]| and replacing

33 3.3 Spatiotemporal graph neural networks

graph convolutions with generic MP layers, the resulting recurrent model
updates representations at each time step ¢ as

Z!=H (3.11)
R) =0 (MPL([Z}||H]] &), (3.12)
0! = o (MP, ([Z}||H]] .&)). (3.13)
C! = tanh (MP! ([Z}||R} © H]_,] &) (3.14)
H =0.0H_,+(1-0)06C], (3.15)

with © denoting the element-wise (Hadamard) product and || the concatenation
operation. Note that we consider, for each gate, a single MP operation at each
[-th layer for conciseness’ sake (a stack of MP layers is often adopted in practice).
Models following a similar approach have found widespread adoption replacing
standard RNNs in the context of correlated time series processing [Li et al., 2018;
Zhang et al., 2018; Bai et al., 2020; Cini et al., 2022b|. In particular, the DCRNN
architecture Li et al. [2018], implementing the MP operators in Equation 3.12-
3.15 with a diffusion convolution operator [Atwood and Towsley, 2016|, has been
among the first STGNN applied to time series forecasting. Apart from GCRNNS,
an approach to building T&S models consists of integrating a temporal operator
directly into the MSG(-) function. Among the others, Wu et al. [2022] and
Marisca et al. [2022] use cross-node attention as a mechanism to propagate
information among sequences of observations at neighboring nodes. As an
additional example, an analogous model could be obtained by implementing
the Up(-) and MSG(-) functions of the STMP layer in Equation 3.7 as TCNs:

Note that the operator resulting from the MP processing defined in Equation 3.16
can be seen as operating on the product graph obtained from spatial and
temporal relationships [Sabbaqi and Isufi, 2022|. Finally, a straightforward
approach to build T&S architectures is that of stacking blocks of alternating
spatial and temporal operators [Yu et al., 2018; Wu et al., 2019, 2020], e.g.,

27, = TCN! (hﬁ;&:t> vi, H! =MP!'(Z.&) vt (3.17)

where TCN'() indicates a temporal convolutional network layer. The first
example of a similar architecture was introduced by Yu et al. [2018]. Among
follow-up works, Wu et al. [2019] introduced the GraphWaveNet architecture,
which exploits the same diffusion convolutions as Li et al. [2018] and residual

34 3.3 Spatiotemporal graph neural networks

dilated TCNs [Oord et al., 2016]. One of the major drawbacks of T&S models
is their time and space complexity which usually scale with the number of

nodes and edges in the graph times the number of input time steps, i.e., with
O(W (N + L|&max])), where N < |Epax| = max{|E;_x|}}V; (see Chapter 8).

Time-then-space models The general recipe for a T'TS model consists in
1) encoding time series associated with each node into a vector representation,
obtaining an attributed graph, and 2) propagating the obtained representations
throughout the graph with a stack of standard MP layers, i.e.,

hi' = SEQENC (hY}) (3.18)
H{™' = MP' (H},&,), Vi=1,...,L—1. (3.19)

The sequence encoder SEQENC (-) can be implemented by any modern deep
learning architecture for sequence modeling (e.g, an RNNs, a TCNs or an
attention-based operator). Note that this temporal encoder can consist of
multiple layers, i.e., it can be a deep network by itself. Since MP is performed
only w.r.t. representations corresponding to the last time step, in case of a
dynamic topology the edge set used for propagation can be obtained as a function
of &_y . rather than simply using &, i.e., E = AGGR{&_w.}. A possible choice
would be to take the union of all the edge sets, which, however, requires further
processing in the case of attributed edges [Gao and Ribeiro, 2022]. TTS models
are relatively uncommon in the literature [Gao and Ribeiro, 2022; Satorras
et al., 2022; Cini et al., 2023a, 2024| but are becoming more popular due to their
efficiency and scalability compared to T&S alternatives [Gao and Ribeiro, 2022].
Differently from generic T&S models, in fact, the number of MP operations does
not depend on the size of the window W. Indeed, TTS models have a time and
space complexity that scales as O (NW+L|&,|), rather than O(W (N+L|Epax]))
of T&S models. However, the two-step encoding might introduce bottlenecks in
the propagation of information. These considerations will be further expanded
upon in Chapter 8, which will be dedicated to addressing scalability challenges.

Space-then-time models STT models can be built by simply inverting
the order of Equation 3.18 and 3.19, i.e., by using MP layers to process static
representations at each time step, then encoded along the temporal axis by a
sequence model, i.e.,

hy* = SEQENC <hi’_ﬂ},}t) : (3.21)

35 3.4 Related work

The general idea behind STT approaches is to first enrich node observations by
accounting for observations at neighboring nodes, and then process obtained
sequences with a standard sequence model. Although they have seen some
applications [Seo et al., 2018; Pareja et al., 2020; Zhao et al., 2019], STT models
do not offer the same computational benefits of TTS models, having the same
O(W(N —I—Llé'maxl)) complexity of T&S models. Nonetheless, as in T&S models,
dynamic edge sets &_ ., can be accounted for by performing MP operations
w.r.t. the corresponding edges at each time step. Analogously to TTS models,
the factorization of the processing in two steps might introduce bottlenecks.

3.3.5 Globality and locality in STGNNs

STGNNs introduced in Section 3.3 are global models that exploit relational
architectural biases to account for related time series, addressing the limitations
of the standard global approach. Indeed, by considering the STMP scheme of
Equation 3.7, it is straightforward to see that STMP layers share the parameters
used to process the time series in the collection. STMP layers condition the
extracted representations on each node’s neighborhood, thus accounting for
spatial dependencies that would have been ignored by standard (univariate)
global models. STGNNs are inductive and transferable as they do not rely
upon node-specific parameters; such properties make them distinctively different
from local multivariate approaches in Equation 2.8. Global models of the type
implemented by STGNNs are akin to those formalized in Equation 2.10, i.e.,

VS =F (00 0) vSeP(D), (3.22)

where GI9! indicates the sub-graph induced by the subset of nodes ¢S. The
interplay between global and local aspects plays a major role in the context of
graph-based forecasting models. Indeed, although the drawbacks of the local
approach are evident, global STGNNs might struggle to effectively account for
the peculiarities of each time series thus motivating the study of hybrid models
which will be the focus of Chapter 5.

3.4 Related work

While we have already discussed architectures usually adopted in the literature,
this section briefly overviews other methods to process dynamic relational data
and the attempts to formalize such frameworks.

36 3.4 Related work

3.4.1 Graph deep learning for temporal data

GDL methods have found widespread application in the processing of dynamic
relational data beyond time series processing [Kazemi et al., 2020; Longa et al.,
2023; Gravina and Bacciu, 2024]. In particular, the term temporal graph (or
temporal network) is used to indicate scenarios where nodes, attributes, and
edges of a graph are dynamic and are given over time as a sequence of events
localized at specific nodes [Kazemi et al., 2020; Rossi et al., 2020; Longa
et al., 2023; Gravina and Bacciu, 2024]. A typical reference application is
the processing of the dynamic relationships and user profiles that characterize
social networks and recommender systems. Kazemi et al. [2020] propose an
encoder-decoder framework to unify existing representation learning methods
for dynamic graphs. Barros et al. [2021] compiled a rich survey of methods
for embedding dynamic networks, while Skarding et al. [2021] focus on GNN
approaches to the same problem. Longa et al. [2023] and Gravina and Bacciu
[2024] introduce a taxonomy of tasks and models in temporal graph processing,
with Gravina and Bacciu [2024] introducing at the same time a benchmark based
on a diverse set of available datasets. Huang et al. [2023] build an alternative set
of benchmarks and datasets with a focus on applications to large-scale temporal
graphs. Besides temporal graphs, a large body of literature has been dedicated
to the processing of sequences of arbitrary graphs, e.g., without assuming any
correspondence between nodes across time steps |[Zambon, 2022; Zambon et al.,
2018; Paassen et al., 2020]. Although the problem addressed in this research
could formally be seen as a sub-case of temporal graph processing, having actual
time series associated with each node radically changes the available tools and
methods, as well as the available model designs and target applications.

Graph deep learning for time series GNNs for time series processing
have been pioneered in traffic forecasting [Li et al., 2018; Yu et al., 2018| and
their application in such context has been extremely successful thereafter |Ye
et al., 2020; Jiang and Luo, 2022; Jin et al., 2023a]. Current application
domains include among the other air quality monitoring [Chen et al., 2021b;
Iskandaryan et al., 2023], energy analytics [Eandi et al., 2022; Cini et al., 2023a],
financial time series processing [Chen et al., 2018b; Matsunaga et al., 2019],
and epidemiological data analysis [Kapoor et al., 2020; Fritz et al., 2022]. As
already discussed, several sequence modeling architectures integrating MP into
the processing have developed, from recurrent GNNs [Seo et al., 2018; Li et al.,
2018; Micheli and Tortorella, 2022], convolutional models [Yu et al., 2018; Wu
et al., 2019] and attention-based architectures [Zheng et al., 2020; Wu et al.,

37 3.4 Related work

2022; Marisca et al., 2022]. Recently, MP have been integrated into deep SSMs
as well [Tang et al., 2023]. Outside of deep learning, graph-based methods
for time series processing have been studied in the context of graph signal
processing [Ortega et al., 2018; Stankovic et al., 2020; Leus et al., 2023| and go
under the name of time-vertex signal processing methods |Grassi et al., 2017].
Related methodologies addressing specific challenges will be further discussed in
the dedicated chapters, we refer to Jin et al. [2023b] for a detailed and thorough
survey of existing architectures.

38

3.4 Related work

Chapter 4

Benchmarks and baselines

Before analyzing challenges and starting addressing specific challenges, this
chapter complements the discussion carried out so far by introducing bench-
marks (Section 4.1) and baselines (Section 4.2) for the introduced forecasting
architectures. Furthermore, we provide numerical simulations showing the im-
pact of the transitioning from standard global and local deep learning predictors
to graph-based architectures when forecasting collections of correlated time
series (Section 4.3). This chapter serves as starting ad reference point for the
empirical results discussed and presented throughout the thesis.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph
Deep Learning for Time Series Forecasting. arXiv preprint arXiv:2310.15978,
2023b

39

40 4.1 Benchmarks

Table 4.1. Statistics of datasets used in the experiments.

DATASETS Type Time steps Nodes Edges Rate
METR-LA Directed 34,272 207 1515 5 minutes
PEMS-BAY | Directed 52,128 325 2369 5 minutes
CER-E Directed 25,728 485 4365 30 minutes
AQI Undirected 8,760 437 2699 1 hour
GPVAR-G | Undirected 30,000 120 199 N/A

4.1 Benchmarks

This section introduces the reference synthetic datasets and real-world bench-
marks.

4.1.1 Data from real sensor networks

We consider datasets coming from traffic forecasting, energy analytics, and air
quality monitoring. In particular, we use the following benchmarks.

METR-LA & PEMS-BAY METR-LA and PEMS-BAY, introduced by Li
et al. [2018], are two popular traffic forecasting datasets consisting of mea-
surements from loop detectors in the Los Angeles County Highway [Jagadish
et al., 2014] and San Francisco Bay Area [Chen et al.; 2001].

CER-E The CER-E dataset [Commission for Energy Regulation, 2016] con-
sists of energy consumption readings, aggregated into 30-minutes intervals,
from 485 smart meters monitoring small and medium-sized enterprises.

AQI The AQI |Zheng et al., 2015 dataset collects hourly measurements of
pollutant PM2.5 from 437 air quality monitoring stations in China, spread
across different cities.

For all datasets except AQI we use a 70% — 10% — 20 for training, validation
and testing. For AQI we use the same splits of Yi et al. [2016]. For simulations,
window and horizon length are set as W = 12, H = 12 for the traffic datasets,
W =48, H = 6 for CER-E, and W = 24, H = 3 for AQI. Besides the input time
series, we use exogenous variables consisting of 1) sinusoidal functions encoding
the time of the day and 2) one-hot encodings of the day of the week. For
datasets with a large number of missing values (METR-LA and AQI), we add

41 4.1 Benchmarks

as an additional exogenous variable the binary mask introduced in Section 3.1.1.
Additional details are reported in Table 4.1.

Relational information The adjacency matrices for the traffic and air
quality monitoring datasets are obtained by applying a thresholded Gaussian
kernel [Shuman et al., 2013| on the pairwise physical distances among sensors.
In particular, for both datasets we consider a weighted adjacency matrix where
entries ai’j = a* corresponding to edges among the i-th and j-th node are

computed as
N _dist(i,j)2> N
g — { exp (=) dist (i,7) <6 7 (A1)

0 otherwise

where dist (4, 7) indicates the distance between the i-th and j-th node, controls
the width of the kernel and ¢ is the threshold. For CER-E the graph connectivity
is derived from the correntropy [Liu et al., 2007] among time series. In particular,
we build an adjacency matrix by extracting a K-nearest neighbor graph (with
K = 10) from the similarity matrix built by computing the average weekly
correntropy among time series.

4.1.2 Synthetic data

To evaluate forecasting architectures in a controlled environment, we adopt a
modified version of the GP-VAR dataset introduced by Zambon and Alippi
[2022].

System model Data are generated by the recursive application, starting
from noise, of an autoregressive polynomial graph filter [Isufi et al., 2019] (with
parameters shared across time series). Specifically, the underlying system model
is specified by

L Q
H=> Y 0,A4"X,_,

=1 g=1
X1 =a®tanh (H;) + b ® tanh (X;_1) + n, (4.2)

where ® € R9*E a € RY, b € RY and 1, ~ N(0,0%). In the basic version of
the dataset, which we refer to as GPVAR-G, we fix a = b = 0.5 for all time
series. The parameters of the spatiotemporal process are set as

6 =[5 750 0ol (4.3)

42 4.2 Baselines

Figure 4.1. GPVAR community graph. We use a graph with 20 communities resulting
in a network with 120 nodes.

The graph topology used to generate the data is the community graph shown
in Fig. 4.1. In particular, we considered a network with 120 nodes with 20
communities. We use this environment to evaluate forecasting architectures
in a setting where taking into account observations at related time series is
needed for making optimal forecasts. A modified version of the dataset will be
introduced in Chapter 5 to assess the impact of dynamics specific to each time
series.

4.2 Baselines

As a case study, we consider recurrent architectures. In particular, starting from
standard RNNs, implemented as GRUs [Chung et al., 2014|, we compare the
performance of a single global RNN sharing parameters across the collections
against a set of local models and against the multivariate approach. In particular,
we consider the following baselines.

RINN: a global node-level GRU conditioning predictions only on the history of
the target as in Equation 2.7. This model does not take spatial dependencies
into account.

FC-RNN: a GRU taking as input all of the time series concatenated along
the spatial dimension as if they were a single multivariate sequence (as
in Equation 2.9). This model lacks flexibility and does not exploit prior
relational information.

LocalRNNs: a set of local GRUs (Equation 2.6). Each GRU is specialized
on a specific time series and no parameter is shared. Similarly to the global
node-level model, spatial dependencies are ignored.

Then, for what concerns graph-based architectures, we consider both TTS and
T&S recurrent architectures. Specifically, we build TTS models by stacking

MP layers after a RNN encoder and take GCRNNs as reference T&S architec-
tures. For both architectures, we implement variants with both isotropic and

43 4.2 Baselines

Table 4.2. One-step-ahead forecasting error (MAE) of on (5 runs).

GPVAR-G
AZ-test
MODELS MAE
Time T&S Space
RNN 3999+ 0000 -3.0+13 = 35.7+10 53.5+05
FC-RNN A4388+.0027 | 261.041.4 252.2163 95.6+s6
LOC&lRNNS .4047i.0001 7.0i3.7 43.41442 54.41[2.3

RNN+IMP 319340000 | 0.9+400 0.5xo7 -0.3x01
RNN+AMP || .3193 0000 12416 0.8411 -0.1x0a1
GCRNN-IMP || .3194+ 0000 1.9+0.4 12404 -0.3+02
GCRNN-AMP || .3195:.0000 2.6+2.0 17414 -0.3x02
Optimal model 3192 — —

T&S | TTS

anisotropic message-passing. In particular, we compare the following model
architectures.

RNN+IMP: a global TTS model composed by a GRU followed by a stack of
isotropic MP layers. The MP operator is defined as in Equation 3.4.

RNN+AMP: aglobal TTS model composed by a GRU followed by anisotropic
MP layers. The MP operator is defined as in Equation 3.5-3.6.

GCRNN-IMP: a global T&S gated GCRNN with isotropic MP. The recur-
rent cell implementation follows Equation 3.12-3.15, the MP operator is set
up as in Equation 3.4.

GCRNN-AMP: a global T&S gated GCRNN with anisotropic MP. The
recurrent cell implementation follows Equation 3.12-3.15, the MP operator is
set up as in Equation 3.5-3.6.

All the considered architectures follow the template defined in Equation 3.8-3.10,
and the different variants are obtained by changing the implementation of the
STMP block. We stress that all the global models share the same parameters
across the time series in the collection.

44 4.3 Some empirical results

State-of-the-art architectures Besides reference architectures, we also
consider the following state-of-the-art graph-based forecasting architectures.

DCRNN [Li et al., 2018]: a recurrent T&S model based on an isotropic
graph convolutional operator aggregating representations form K-hop neigh-
borhoods [Atwood and Towsley, 2016].

AGCRN [Bai et al., 2020]: a T&S hybrid global-local GCRNN where weights
in each layer are dependent on the nodes being processed.

GraphWaveNet [Wu et al., 2019]: a deep T&S spatiotemporal convolu-
tional network based on stack of dilated TCNs and multi-hop graph convolu-
tions.

Additional baselines will be introduced, whenever appropriate, in the next
chapters.

4.3 Some empirical results

In this section, we provide some preliminary empirical results to substantiate
the discussion carried out in the previous chapters. Additional details and
results are reported in Appendix D and in the reference paper [Cini et al.,
2023b].

GP-VAR In the first experiment, we train the models on the task of one-
step-ahead prediction in GPVAR-G. Besides MAE, we use AZ-whiteness test
statistics [Zambon and Alippi, 2022] to assess the presence of temporal, spatial
and spatiotemporal correlations on the prediction residuals. In particular, the
test statistics allow for quantifying the residual correlation. The performance
of the optimal model is obtained analytically by considering the variance of the
noise 7; in Equation 4.2. As expected, models that do not exploit spatial depen-
dencies (RNN, FC-RNN and LocalRNNs) struggle in both datasets, displaying
large residual spatial correlation, as shown by the spatial and spatiotemporal
statistics. Graph-based methods, instead, achieve performance close to the
theoretical optimum in GPVAR-G, with the test statistics close to zero.

Benchmarks Table 4.3 shows the results of the empirical evaluation of the
reference models on the selected datasets. Graph-based architectures outperform
standard local and global predictors in all of the considered scenarios. Notably,
as one might expect, local models perform and scale poorly. The performance

45 4.3 Some empirical results

Table 4.3. Forecasting error (MAE) on 4 benchmark datasets (5 runs). The best result
between each model and its variant with embeddings is in bold.

MODELS ‘ METR-LA PEMS-BAY CER-E AQI

RNN 3.54+ .00 1.77+.00 4.57+0.01 14.02+.04

Cé) RNN+IMP 3.34+.0 1.72+ .00 4.39+0.01 12.74+.02
B RNN+AMP 3.24+.01 1.66+.00 4.31+0.01 12.30+.02
g GCRNN-IMP 3.35+.01 1.70+.01 4.44 1001 12.87+.02
= | GCRNN-AMP 3.224.02 1.65+.00 4.57+00 12.29+.02
§ DCRNN 3.22+.01 1.64+.00 4.28+001 12.96+.03
;?:% GraphWaveNet 3.054+ .03 1.56+.01 3.97+x001 12.08+11
= AGCRN 3.16+.01 1.61:00 4.451001 13.33.02

of state-of-the-art architectures shows that performance can be improved w.r.t.
the vanilla TTS and T&S models; the next chapter will provide more insights on
the source of these performance gains. As a final comment, anisotropic message-
passing schemes outperform their isotropic counterparts in most scenarios,
while reference T'TS architectures perform on par or better than T&S models.
However, these results do not necessarily generalize to all datasets and TTS/T&S
architectures, e.g., as shown by the performance of GraphWaveNet.

46

4.3 Some empirical results

Chapter 5

Local effects

Global STGNNs models have several advantages over standard multivariate
models. However, explicitly accounting for the behavior of individual time
series might be problematic (Challenge 1) [Montero-Manso and Hyndman,
2021|. In this chapter, we introduce hybrid global-local STGNNs and assess
how to incorporate node-specific components in graph-based forecasting archi-
tecture. In particular, we identify learnable node-embeddings as and effective
and efficient methodology to obtain such models. Furthermore, we show that
node embeddings for time series outside the training dataset can be obtained
by fitting a relatively small number of observations. The chapter is structured
as follows. Section 5.1 introduces the problem and background,, while Sec-
tion 5.2 discusses approaches to obtain hybrid predictors following the template
architecture introduce in Section 3.3.3. Section 5.3 introduces learnable node
embeddings as method to amortize the learning of node-specific components.
The transferability of the resulting forecasting models to different node sets
is then discussed in Section 5.4; Section 5.6 empirically evaluate the proposed
methodology. Section 5.5 and Section 5.7 discuss related works and future
directions, respectively.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming
Local Effects in Graph-based Spatiotemporal Forecasting. Advances in
Neural Information Processing Systems, 2023c

47

48 5.1 Dealing with local effects

5.1 Dealing with local effects

Modeling the individual dynamics of each time series can be challenging for
global models [Montero-Manso and Hyndman, 2021]. As an example, consider
the problem of electric load forecasting: consumption patterns of single cus-
tomers are influenced by shared factors, e.g., weather conditions and holidays,
but are also determined by the daily routine of the individual users related
by varying degrees of affinity. We refer to the dynamics proper to individual
nodes as local effects. If local effects are present, global models might require
an impractically large model capacity to account for all node-specific dynam-
ics [Montero-Manso and Hyndman, 2021], thus losing some of the advantages of
using a global approach. In particular, in the STGNN case, then, increasing the
input window for each node would result in a large computational overhead.

Dealing with local effects Local effects might be tacked by providing the
global model with a mechanism to promptly characterize the target time series.
Ideally, as we will discuss in Section 5.3, this could be done by exploiting static
attributes such as the positional encodings used by, e.g., graph Transformer
architectures [Rampasek et al., 2022|. However, these are rarely available
in practice, and extracting them might require thorough feature engineering.
Furthermore, hand-crafted features could end up active as mere identifiers if the
size of the collection does not allow for learning meaningful representations of
static node attributes. A different approach is that of considering hybrid global-
local architectures as discussed in Section 2.5.2 [Wang et al., 2019; Smyl, 2020].
By doing so, the designer accepts a compromise in transferability and model
complexity that often empirically leads to higher forecasting accuracy. Notably,
the added complexity and specialization might negate the benefits of using a
global component. In this regard, it has become common to see node-specific
trainable parameters being introduced as a means to extract node(sensor)-level
features and then used as spatial identifiers within the processing [Bai et al.,
2020; Deng and Hooi, 2021]. Although several of these architectures exist,
none of the previous works discussed the implications of the adopted design
choices in the context of global and local forecasting. In the following, we
interpret learnable node embeddings as a method to amortize the learning of
local processing blocks in hybrid forecasting architectures.

49 5.2 Hybrid global-local STGNNs

5.2 Hybrid global-local STGNNs

Combining global graph-based components with local node-level components
has the potential for achieving a two-fold objective: 1) exploiting relational
dependencies together with side information to learn flexible and efficient graph
deep learning models and 2) making at the same time specialized and accurate
predictions for each time series. In particular, global-local STGNNs approximate
the data-generating process as

plg{wz} (wi+h|gt—W:t7 Ut:t+h+1) ~ pl (wi+h‘X<t7 Ut:t+h+1)) (51)

where parameter vector 0 is shared across all nodes, whereas {w'}Y | are
time-series dependent parameters. The associated point predictor is

X\-t:t+H =F (gtfw:h s 707 {wl iV:1> (52)

where F(-) is shared among all nodes. Predictor F(-;0,{w'}Y,) could be
implemented, for example, as a sum between a global model and a (simpler)
local one:

(1 ~1,(2 7 i
Xt(:t)+H = ’FG (gt*W#/? cee 70)) wt:£+)H = fz (wth:b oW) (53)

@izt+H = ‘ﬁj&gH + iiﬁ)m (5.4)
or — with a more integrated approach — by using different weights for each time
series at the encoding and /or decoding steps. The latter approach results in using
a different encoder and/or decoder for each i-th node in the template STGNN
architecture (Equation 3.8-3.10) to extract representations and, eventually,
project them back into the input space:

h;’, = ENCODER,; (z,_;,ui_,,v";w.,.) (5.5)

~7q '7L . . .
wllf:t—i-H = DECODERi <h12f—17 uizfzt+H? w;ee) . (56)

STMP layers could in principle be modified as well to include specialized
operators, e.g., by using a different local update function UP;(-) for each node.
However, this would be impractical unless subsets of nodes are allowed to share
parameters to some extent (e.g., by clustering them).

To support our arguments, Table 5.1 shows empirical results for the reference
TTS models with isotropic message passing (RNN+IMP) on METR-LA and
PEMS-BAY, the two popular traffic forecasting benchmarks introduced in

50 5.3 Node embeddings

Table 5.1. Perfomance (MAE) of RNN+IMP variants and number of associated
trainable parameters (5-run average).

METR-LA [# params| | PEMS-BAY |[# params|
Global TTS 3.35 xoor 4.71x10* 1.72 000 4.71x10%

@ £ Encoder 3.15 +o.01 2.05x10° 1.66 +o0.01 2.75%10°
B Decoder 3.09 +o.01 2.08x10° 1.58 +0.00 3.00x10°
&| = | Enc. + Dec. | 3.16 +o.01 3.66x10° 1.70 +o.01 5.28%10°
< 5| Encoder 3.08 1001 5.59x 10" 1.58 t000 5.96x10°
%3 ié Decoder 3.13 +0.00 5.59% 104 1.60 +o.00 5.96x 104
| @ | Enc. + Dec. | 3.07 o001 5.79%x 104 1.58 +0.00 6.16x10%
FC-RNN 3.56 + 0.0 2.04x10° 2.32 + 001 3.04x10°
LocalRNNs 3.69 +o.00 7.04x10° 1.91 10.00 1.10x107

Chapter 4. In particular, we compare the global approach with 3 hybrid global-
local variants where local weights are used in the encoder, in the decoder, or
in both of them (see Equation 5.5-5.6 and the light brown block in Table 5.1).
While fitting a separate RNN to each individual time series fails (LocalRNNs),
exploiting a local encoder and/or decoder significantly improves performance
w.r.t. the fully global model. Note that the cost of specialization is paid in
terms of the number of learnable parameters which is an order of magnitude
higher in global-local variants. Remarkably, having both encoder and decoder
implemented as local layers leads to an even larger number of parameters
and has a marginal impact on forecasting accuracy. The table reports as a
reference also results for FC-RNN, the multivariate RNN taking as input the
concatenation of all time series.The light gray block in Table 5.1 anticipates the
effect of replacing the local layers with the use of learnable node embeddings,
an approach discussed in depth in the next section.

5.3 Node embeddings

Section 5.3.1 introduces node embeddings as a mechanism to amortize the
learning of local components and discusses the supporting empirical results.
Section 5.3.2 then proposes possible regularization techniques and discuss the
advantages of embeddings in transfer learning scenarios.

51 5.3 Node embeddings

5.3.1 Amortized specialization

As discussed in Section 5.1, static node features and positional encodings offer
the opportunity to design and obtain node identification mechanisms across
different time windows to tailor predictions to a specific node. However, in most
settings, node features are either unavailable or insufficient to characterize the
node dynamics. Furthermore, not having access to a large enough collection
might prevent the model from using such encodings effectively. A possible
solution consists of resorting to learnable node embeddings, i.e., a table of
learnable parameters © = Q € RV¥*%_ Rather than interpret these learned
representations as positional encodings (such as those used in graph Trans-
formers), our proposal is to consider them as a way of amortizing the learning
of node-level specialized models. More specifically, instead of learning a local
model for each time series, embeddings fed into modules of a global STGNN
and learned end-to-end with the forecasting architecture allow for specializing
predictions by simply relying on gradient descent to find a suitable encoding.

The most straightforward option for feeding embeddings into the processing
is to update the template model by changing the encoder and decoder as

h;’ = ENCODER (z!_,,...,q'), (5.7)
ii:t+H = DECODER (h’i’L7 ey ql> . (58)

which can be seen as amortized versions of the encoder and decoder in Equa-
tion 5.5-5.6. The encoding scheme of Equation 5.7 also facilitates the prop-
agation of relevant information by identifying nodes, an aspect that can be
particularly significant as message-passing operators — in particular isotropic
ones — can act as low-pass filters that smooth out node-level features [Nt and
Maehara, 2019; Oono and Suzuki, 2019].

Table 5.1 (light gray block) reports empirical results that show the effec-
tiveness of embeddings in amortizing the learning of local components, with
only a moderate increase in the number of trainable parameters w.r.t. the base
global model. In particular, feeding embeddings to the encoder, instead of
conditioning the decoding step only, results in markedly better performance,
hinting at the impact of providing node identification ahead of MP (additional
empirical results are provided in Section 5.6).

5.3.2 Structuring the embedding space

The latent space in which embeddings are learned can be structured and
regularized to enjoy benefits in terms of interpretability and transferability. In

52 5.3 Node embeddings

fact, accommodating new embeddings can be problematic, as they must fit in a
region of the embedding space where the trained model can operate, and, at the
same time, capture the local effects at the new nodes. In this setting, proper
regularization can provide positive inductive biases and help transfer the learned
model to different node sets. As an example, if domain knowledge suggests that
neighboring nodes have similar dynamics, Laplacian regularization [Zhou et al.,
2003; Kipf and Welling, 2017] can be added to the loss. Clearly, regularization
needs to preserve the effectiveness of embeddings in specializing the predictions.
In the following, we propose two general-purpose strategies based on variational
inference and node clustering to impose soft constraints on the latent space. As
shown in Section 5.6, the resulting structured space additionally allows us to
gather insights into the features encoded in the embeddings.

Variational regularization As a probabilistic approach to structuring the
latent space, we propose to consider learned embeddings as parameters of an
approximate posterior distribution — given the training data — on the vector
used to condition the predictions. In practice, we model each node embedding
as a sample from a multivariate Gaussian q¢° ~ r'(q‘|D) = N (u;, diag(a?))
where (u;, o;) are the learnable (local) parameters. Each node-level distribution
is fitted on the training data by considering a standard Gaussian prior and
exploiting the reparametrization trick [Kingma and Welling, 2013| to minimize

5, = Equr [é (E;HH, Xt:HH)} + 8Dk (R|P), (5.9)

where P = N(0,1) is the prior, Dk the Kulback-Leibler divergence, and
[controls the regularization strength. This regularization scheme pushes
toward learning a smooth latent space where it is easier to interpolate between
representations, thus providing a principled way for accommodating different
node embeddings.

Clustering regularization A different (and potentially complementary)
approach to structuring the latent space is to incentivize node embeddings to
form clusters and, consequently, to self-organize into different groups. We do so
by introducing a regularization loss inspired by deep K-means algorithms [Yang
et al., 2017al. In particular, besides the embedding table Q@ € RY*% we equip
the embedding module with a matrix C € RX*% of K < N learnable centroids
and a cluster assignment matrix § € RV*¥ encoding scores associated to each
node-cluster pair. We consider scores as logits of a categorical (Boltzmann)

53 5.4 Transferability

distribution and learn them by minimizing the regularization term

Si;/T
. erii
Lreg=BEm[|Q - MC|,], p(My;=1)= S esar
where 7 is a hyperparameter. We minimize £,., — which corresponds to the
embedding-to-centroid distance — jointly with the forecasting loss by relying on
the Gumbel softmax trick [Maddison et al., 2017]. Similarly to the variational
inference approach, the clustering regularization gives structure to embedding

space and allows for inspecting patterns in the learned local components (see
Section 5.6).

5.4 Transferability

One of the main advantages of global models based on GNNs is that they can
make predictions for never-seen-before node sets, and handle graphs of different
sizes and variable topology. As we discussed, graph-based predictors can be
used for zero-shot transfer and inductive learning and can easily handle new
time series being added to the collection; this corresponds to the real-world
scenario of new sensors being added to a network over time. This flexibility has
several applications in time series processing besides forecasting, e.g., as models
for performing spatiotemporal kriging [Stein, 1999] or virtual sensing [Cini et al.,
2022b; Wu et al., 2021b; Zheng et al., 2023] (see Chapter 6), where inductive
STGNNSs can be used to perform graph-based spatial interpolation. However,
as we will show in Section 5.6, performance in the inductive setting can quickly
degrade as soon as the target time series exhibit dynamics that deviate from
those observed in the training examples. Clearly, this flexibility is completely
compromised in architectures that include node-specific local components and,
as a result, cannot make zero-shot forecasts.

Transfer learning STGNNSs can be adjusted to account for other sets of time
series (with different dynamics) by fine-tuning on the available data a subset
of the forecasting architectures weights. In particular, if local components are
replaced by node embedding, adapting the specialized components is relatively
cheap since the number of parameters to fit w.r.t. the new context is usually
contained, and the structure of the embedding latent space can be exploited.
In other words, node embeddings can amortize the cost of the transfer learning
by limiting the fine-tuning of the model to fitting a new set of embeddings for
the nodes in the target set while freezing the shared weights. Experiments in

54 5.5 Related work

Section 5.6 provide an in-depth empirical analysis of transferability within our
framework and show that the discussed regularizations can be useful in this
regard.

5.5 Related work

Although the interplay between globality and locality plays such a central
role in graph-based forecasting, it has received only minor attention from the
research community. In particular, while several architectures have included
node-specific components, none of the previous works discussed the implications
of the adopted design choices in the context of global and local forecasting.
Among the methods that focus on modeling node-specific dynamics, Bai et al.
[2020] use a factorization of the weight matrices in a recurrent STGNN to adapt
the extracted representation to each node. Conversely, Chen et al. [2021a]
use a model inspired by Wang et al. [2019] consisting of a global GNN paired
with a local model conditioned on the neighborhood of each node. Node
embeddings have been mainly used in structure-learning modules to amortize
the cost of learning the full adjacency matrix [Wu et al., 2019; Shang and Chen,
2021; Deng and Hooi, 2021] and in attention-based approaches as positional
encodings [Satorras et al., 2022; Marisca et al., 2022; Zheng et al., 2020]. Learned
embeddings are indeed key components in several Transformer architectures [Liu
et al., 2023a; Xiao et al., 2024|. Shao et al. [2022] observe how adding node
and time embeddings to an otherwise global (univariate) architecture can
outperform several state-of-the-art STGNNs. Conversely, Yin et al. [2022] used
a cluster-based regularization to fine-tune an AGCRN-like model on different
datasets. None of the previous works systematically directly addressed the
problem of globality and locality in STGNNs, nor provided a comprehensive
framework accounting for learnable node embeddings within different settings
and architectures. Besides GDL methods, as we already discussed in Chapter 2,
there are several examples of hybrid global and local time series forecasting
models [Wang et al., 2019; Smyl, 2020], which however do not address the
transfer learning scenarios.

5.6 Empirical results

This section reports salient results of an extensive empirical analysis of global and
local models and combinations thereof in spatiotemporal forecasting benchmarks
and different problem settings; additional results can be found in the reference

55 5.6 Empirical results

Table 5.2. One-step-ahead forecasting error (MAE) of on GPVAR-L (5 runs).

GPVAR-L
MODELS MAE AZ-test
Time T&S Space
RNN .D441+0002 | 10.8+26 0.5+19 -10.1+0s3
< + Emb. || .4611+ 0003 6.1414 -1.1x11 -7.7x0s
FC-RNN 5948+ 0102 | 108.4481 T73.6265 -4.4423
LocalRNNs 46100003 32411 -2.3x11 -6.5+1a
RNN+IMP .3808+.0031 | 13.8422 7.9:16 -2.6+00
Cé) — + Emb. || .3197+.0001 14110 1.0£00 -0.0x03
=] RNN+AMP | .3639:o00s2 | 13.1t26 7.5:24 -2.5:10
< + Emb. || .3199+ 0001 1.8407 1.0x06 -0.3x0.3
GCRNN-IMP || .3714+.0070 | 15.2420 9.0+16 -2.5+15
£ < + Emb. || .3204+.0001 24100 1.8x0 0.1x02
H | GCRNN-AMP || .3518+.0013 | 10.5425 5.7+16 -2.4x06
< + Emb. || .3204x 0002 1.8:06 0.9:t04 -0.410s

Optimal model .3192 — — —

paper |Cini et al., 2023c|]. We consider the same models and hyperparameters
introduced in Chapter 4; additionally, we consider the variations of the models
augmented by the use of node embeddings ((Equation 5.7-5.8)) Note that among
the baselines selected from the literature (namely DCRNN, GraphWaveNet,
and AGCRN) only DCRNN can be considered fully global (see Section 5.5).

5.6.1 Synthetic data

We start by assessing the performance of hybrid global-local spatiotemporal
models on a variant of GPVAR-G (Section 4.1), modified to include local effects.
In particular, we keep the structure data-generating process unchanged, i.e.,

56 5.6 Empirical results

data are generated as

L Q
H =) Y 0,4A47X,

=1 g=1
Xi+1 = a ©tanh (H;) + b ® tanh (Xy—1) + 4, (5.10)

but, instead of having a and b fixed, we sample them from a uniform distribution
for each time series such that for each i-th node

a’ b ~U(-2,2). (5.11)

Table 5.2 shows forecasting accuracy for reference architectures with a 6-steps
window on data generated from the processes. In GPVAR-L, global and
univariate models fail to match the performance of STGNNs that include local
components; interestingly, the global model with anisotropic MP outperforms
the isotropic alternative, suggesting that the more advanced MP schemes can
lead to more effective state identification.

5.6.2 Benchmarks

We then compare the performance of reference architectures and baselines with
and without node embeddings at the encoding and decoding steps. Note that,
while reference architectures and DCRNN are purely global models, the vanilla
versions of GraphWaveNet and AGCRN already use node embeddings to obtain
an adjacency matrix for MP. AGCRN, furthermore, uses embeddings to make
the convolutional filters adaptive w.r.t. the node being processed. We evaluate
all models on real-world datasets from three different domains (traffic networks,
energy analytics, and air quality monitoring), by considering the settings
introduced in Chapter 4. In particular, besides the already mentioned traffic
forecasting benchmarks (METR-LA and PEMS-BAY), we run experiments
on smart metering data from the CER-E dataset [Commission for Energy
Regulation, 2016] and air quality measurements from AQI [Zheng et al., 2015].
Table 4.3 reports forecasting MAE averaged over the forecasting horizon. Global-
local reference models outperform the fully global variants in every considered
scenario. A similar observation can be made for the state-of-art architectures,
where the impact of node embeddings (at encoding and decoding) is large for
the fully global DCRNN and more contained in models already equipped with
local components. Note that hyperparameters were not tuned to account for
the change in architecture. Surprisingly, the simple RNN+IMP model equipped
with node embeddings achieves results comparable to that of state-of-the-art

57 5.6 Empirical results

Table 5.3. Forecasting error (MAE) on 4 benchmark datasets (5 runs). The best result
between each model and its variant with embeddings is in bold.

- -
s 3 3
‘A ‘I
2 = 5 S 2 = 5 S
MODELS = A ®) < = A 9 <
Reference arch. Global models Global-local models (with embeddings)
RNN 3.54400 1.77+00 4.57x001 14.024.04]3.15+.03 1.59+.00 4.2210.02 13.73+.04

GCRNN-IMP |3.35+.01 1.70+.01 4.444001 12.874.02/3.10+.01 1.59+.00 4.1820.00 12.48+.03
RNN+IMP |3.34x.01 1.72100 4.3940.01 12.744.02|3.08+.010 1.58+.00 4.1240.03 12.33+.02
GCRNN-AMP [3.221.02 1.65+.00 4.57+00a 12.294.02(3.07+.02 1.594.00 4.1710.02 12.17+.05
RNN+AMP [3.241.01 1.66+.00 4.314001 12.304.02(3.06+.01 1.58+.01 4.1340.00 12.15+.02

Baseline arch. Original Embeddings at Encoder and Decoder
DCRNN 3.22+01 1.64+00 4.28+01 12.96+.03]3.07+02 1.60+00 4.13102 12.53+.02
GraphWaveNet |3.05+.03 1.56+.01 3.97+.01 12.08211]2.99+02 1.58+00 4.0l+01 11.81+.04
AGCRN 3.16+01 1.61+00 4.45+01 13.33+.02|3.14+00 1.62+.00 4.37+02 13.28+.08

STGNNs with a significantly lower number of parameters and a streamlined
architecture. Interestingly, while both global and local RNNs models fail, the
hybrid global-local RNN obtains remarkable performance.

Structured embeddings To test the hypothesis that structure in embedding
space provides insights on the local effects at play, we consider the clustering
regularization method (Section 5.3.2) and the reference RNN+IMP model trained
on the CER-E dataset. We set the number of learned centroids to K = 5
and train the cluster assignment mechanism end-to-end with the forecasting
architecture. Then, we inspect the clustering assignment by looking at intra-
cluster statistics. In particular, for each load profile, we compute the weekly
average load curve, and, for each hour, we look at quantiles of the energy
consumption within each cluster. Figure 5.1a shows the results of the analysis
by reporting the median load profile for each cluster; shaded areas correspond
to quantiles with 10% increments. Results show that users in the different
clusters have distinctly different consumption patterns. Figure 5.1b shows a 2D

[9))
o0

5.6 Empirical results

[)
G

Clustern. 1 —— Clustern. 2 — Clustern. 3 —— Clustern. 4 — Clustern. 5

— —)
S 1 S
o - ©

w

Average cluster load (kWh)

M&W)
TR A\ AL AL a? a e e ee— 2

)
0000 1200 00:00 1200 0000 1200 00:00 1200 0000 1200 00:00 1200 0000 12:00 > 1 5 i 3
Mon Tue Wed Thu Fri Sat Sun - -

(a) Average cluster load by day of the week. (b) Node embeddings.

Figure 5.1. Time series clusters in CER-E obtained by regularizing the embedding
space. (a) Average load for each clusters. (b) t-SNE plot of the corresponding node
embeddings.

Table 5.4. Datasets considered in the transfer learning experiments.

DATASETS Type Time steps Nodes FEdges Rate

PEMSO03 Directed 26,208 358 546 5 minutes
PEMS04 Directed 16,992 307 340 5 minutes
PEMS07 Directed 28,224 883 866 5 minutes
PEMSO08 Directed 17,856 170 277 5 minutes

t-SNE visualization of the learned node embeddings, providing a view of the
latent space and the effects of the cluster-based regularization.

5.6.3 Transfer learning

In this experiment, we consider the scenario in which an STGNN for traffic
forecasting is trained by using data from multiple traffic networks and then used
to make predictions for a disjoint set of sensors sampled from the same region.
We use the PEMS03, PEMS04, PEMSO07, and PEMSO08 datasets [Guo
et al., 2021b|, which contain measurements from 4 different districts in Cal-
ifornia. We train models on 3 of the datasets, fine-tune on 1 week of data
from the target left-out dataset, validate on the following week, and test on
the week thereafter. Following previous works [Guo et al., 2021b]|, we split the
datasets into 60%/20%/20% for training, validation, and testing, respectively.
We compare variants of RNN+IMP with and without embeddings fed into
encoder and decoder. Together with the unconstrained embeddings, we also
consider the variational and clustering regularization approaches introduced

59

5.6 Empirical results

Table 5.5. Forecasting error (MAE) in the transfer learning setting (5 runs average).
Results refer to a 1-week fine-tuning set size on all PEMS datasets.

RNN+IMP PEMS03 ~ PEMS04 PEMS07 PEMSO08
| Global | 1530 005 2159 011 23.82 x00s 1590 =007
; Embeddings | 14.64 <005 20.27 £011 22.23 + o008 15.45 + 0.6
é — Variational | 14.56 +o0.0s 20.19 +005 22.43 002 15.41 + 0.06
" |~ Clustering | 14.60 < 002 19.91 £ 011 22.16 + 007 15.41 = .06

Zero-shot 1820 000 23.88 x00s 32.76 x 060 20.41 007

Table 5.6. Forecasting error (MAE) on PEMS04 in the transfer learning setting by
varying fine-tuning set size (5 runs average).

Model Training set size
RNN+IMP 2 weeks 1 week 3 days 1 day
Global 20.86 o003 21.59 o011 21.84 £o0s 22.26 +o0.10
Embeddings | 19.96 +o00s 20.27 £o011 21.03 £014 21.99 £ 0.3
— Variational | 19.94 + 008 20.19 005 20.71 £ 012 21.20 + 0.5
— Clustering | 19.69 +o0.06 19.91 +0.11 20.48 1000 21.91 +o021

in Section 5.3.2. At the fine-tuning stage, the global model updates all of its
parameters, while in the hybrid global-local approaches only the embeddings
are fitted to the new data. Table 5.5 reports results for the described scenario.
The fully global approach is outperformed by the hybrid architectures in all
target datasets. Besides the significant improvement in performance, adjusting
only node embeddings retains performance on the source datasets. Furthermore,
results show the positive effects of regularizing the embedding space in the
transfer setting. This is further confirmed by results in Table 5.6, which reports,
for PEMS04, how forecasting error changes in relation to the length of the
fine-tuning window. We refer to Appendix E for an in-depth analysis of several
additional transfer learning scenarios.

60 5.7 Discussion and future directions

5.7 Discussion and future directions

This chapter investigated the impact of locality and globality in graph-based
spatiotemporal forecasting architectures and introduced a framework for build-
ing hybrid global-local predictors. The introduced framework sheds light on
the empirical results associated with using trainable node embeddings in the
spatiotemporal forecasting literature. We also discussed different architectures
and regularization techniques to account for local effects in different scenarios.
The proposed methodologies are thoroughly empirically validated and, although
not inductive, prove to be effective in a transfer learning context. We argue
that the issues addressed here are of central importance for the understanding
and design of effective graph-based spatiotemporal forecasting architectures.

Future directions Adding node specific components to the forecasting archi-
tecture, even if by exploiting node embeddings, makes the number of parameters
scale linearly with the number of input time series (nodes). Future research
could aim at tackling the issues by designing intermediate solutions, e.g., relying
clustering to identify groups of time series that can share parameters. This idea
has been, for example, explored by Bandara et al. [2020], which partition time
series collections into groups and learn a global model specific to each group.
Similarly, Xiao et al. [2024] introduced a Transformer architecture with a fixed
number of learnable positional encodings. Nonetheless, assigning new target
time series to a specific group if not trivial, especially if only few observations
are available. In summary, future research should focus on 1) making the learn-
ing of specific components more scalable and 2) further tailoring the resulting
methodologies to transfer (and possibly inductive) learning,.

Chapter 6
Missing data

This chapter addresses the problem of missing data and introduces graph-
based methodologies for data reconstruction (Challenge 2). Dealing with
missing values and incomplete time series is a labor-intensive and inevitable
task when handling data from real-world applications. Here, we consider the
problem in the context of collections of correlated time series and introduce
methodologies to reconstruct missing observations by exploiting dependencies
across time and space. In this research, we introduce a comprehensive GDL
framework for missing data imputation. We propose two STGNN architectures
for data reconstruction based on graph RNNs and attention-based MP operators.
Empirical results show that graph-based models outperform state-of-the-art
methods on relevant benchmarks with performance improvements often higher
than 20%. Section 6.1 introduces the problem and discusses related works.
Section 6.3 and 6.4 present the proposed methodologies. Experimental results
are reported and discussed in Section 6.5. Section 6.6 summarizes the results
and discusses future directions.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the G_ap_s:
Multivariate Time Series Imputation by Graph Neural Networks. In
International Conference on Learning Representations, 2022b

e Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to Reconstruct
Missing Data from Spatiotemporal Graphs with Sparse Observations. In
Advances in Neural Information Processing Systems, 2022

61

62

e Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir Gusev, and
Cesare Alippi. Graph-based Virtual Sensing from Sparse and Partial
Multivariate Observations. In International Conference on Learning

Representations, 2024

63 6.1 Dealing with missing data

6.1 Dealing with missing data

Imputation of missing values is a prominent problem in multivariate time-series
analysis from both theoretical and practical perspectives [Little and Rubin,
2019]. In fact, current systems acquire data through large and heterogeneous
sensor networks often characterized by irregular sampling procedures which,
together with hardware and software faults, result in incomplete observations.
This means that the time series collections acquired by these systems can have
considerable amounts of missing values. Missing values can appear uniformly at
random over time and space or, e.g., be spatially and temporally correlated. In
particular, we might observe contiguous blocks of missing data in time but also
in space, with concurrent failures localized in a region of the network. In this
context, effective imputation methods should aim at reconstructing the missing
observations by possibly exploiting both temporal and spatial dependencies.

Dealing with missing data Reconstructing missing observations has relevant
applications on its own as it provides insights on the monitored systems and,
in many cases, is a required preprocessing step to enable further analysis, e.g.,
forecasting. Among different imputation methods, approaches based on deep
learning have become increasingly popular [Yoon et al., 2018; Cao et al., 2018;
Liu et al., 2019; Du et al., 2023]. However, as discussed in Section 6.1.1, these
methods often disregard available relational information. As already argued
in the thesis, GDL offers the tools needed to go beyond this limitation [Cini
et al., 2022b; Marisca et al., 2022; Chen et al., 2022; Liu et al., 2023b; Wang
et al., 2023; De Felice et al., 2024|. For the first time in the literature, the
following introduces a comprehensive GDL framework for (multivariate) time
series imputation by exploiting purposely designed STGNNs and relational side
information [Cini et al., 2022b; Marisca et al., 2022]. In particular, we introduce
Graph Recurrent Imputation Network (GRIN), a bidirectional GCRNNs model
performing imputation by autoregressively integrating information across both
time and space. We then extended the methodology to attention-based methods
to tackle error-compounding issues that might occur in certain scenarios when
relying on recurrent architectures [Marisca et al., 2022].

6.1.1 Related work

A large amount of literature addresses missing value imputation in time series.
Besides interpolation based on polynomial curve fitting, popular approaches
aim at filling up missing values by using standard statistical methods. For

64 6.1 Dealing with missing data

example, several approaches rely on K-nearest neighbors |Troyanskaya et al.,
2001; Beretta and Santaniello, 2016], expectation maximization [Ghahramani
and Jordan, 1994| or linear predictors and state-space models [Durbin and
Koopman, 2012|. Low-rank approximation methods, such as methods based on
matrix factorization [Cichocki and Phan, 2009], are also widely popular and can
incorporate temporal [Yu et al., 2016] and relational information [Kalofolias
et al., 2014; Rao et al., 2015]. The idea of exploiting geometry and relational
structures to perform dimensionality reduction and denoising is also related to
manifold learning [Tenenbaum et al., 2000; Belkin and Niyogi, 2001; Coifman
and Lafon, 2006]. Currently, deep learning methods are among the most
commonly used approaches in time series imputation.

Deep learning for time series imputation Deep autoregressive models
based on RNNs have been widely studied and adopted [Che et al., 2018; Yoon
et al., 2017; Cao et al., 2018; Miao et al., 2021]. In this direction, BRITS [Cao
et al., 2018] is archetypal of several related works which exploit bidirectional
RNNs to perform imputation. Several approaches in the literature, then, rely
on generative models [Yoon et al., 2018; Luo et al., 2018, 2019; Miao et al., 2021;
Alcaraz and Strodthoff, 2023|. Attention-based imputation techniques have also
been proposed [Du et al., 2023; Tashiro et al., 2021; Shukla and Marlin, 2021].
However, none of these prior works explicitly account for spatial dependencies
within the graph processing framework and overlook the spatial dimension of
the problem. Other works, instead, address this problem in the context of
continuous-time models [Chen et al., 2018a; Rubanova et al., 2019; Bilos et al.,
2023]. Huang et al. [2020], in particular, exploit graph representations to model
dependencies among irregularly sampled spatiotemporal data. The limits of
deep autoregressive approaches in data reconstruction have also been tackled
by using hierarchical imputation methods [Liu et al., 2019]. GRIN [Cini et al.,
2022b] has been the first among several GDL frameworks for general multivariate
time series imputation [Chen et al., 2022; Liu et al., 2023b; Wang et al., 2023|.
Other graph-based architectures have been used in application-specific settings,
such as traffic data |Liang et al., 2022b; Ye et al., 2021], load profiles from smart
grids [Kuppannagari et al., 2021|, and trajectory reconstruction |[Omidshafiei
et al., 2022]. Many different architectures are being investigated and we refer
to Jin et al. [2023b] for a recent survey. Related to imputation, STGNNs
have been also used to perform virtual sensing [Stein, 1999; Wu et al., 2021b;
Cini et al., 2022b], i.e., to infer observations at unmonitored locations, i.e.,
nodes with no valid observation attached. In particular, Wu et al. [2021D],
Zheng et al. [2023], and Xu et al. [2023] directly tackle the virtual sensing

65 6.2 Problem definition

problem in inductive learning settings. In particular, we have recently explored
the problem of virtual sensing from partial observations in [De Felice et al.,
2024], where, besides considering relationships between different time series, we
leveraged a nested graph structure to model dependencies among covariates.
Besides applications to time series, GNN are also popular architectures for
reconstructing missing features in static graphs [Spinelli et al.; 2020; You et al.,
2020] and for relational matrix completion [Monti et al., 2017; Berg et al., 2017].
In this context, Rossi et al. [2021], finally, adapt label propagation [Ghahramani
and Jordan, 1994] to deal with missing node features.

6.2 Problem definition

To model the presence of missing values, as mentioned in Section 3.1.1, we
consider, at each step, a binary mask M; € {0, 1}¥*% where mi[k] = 1 if k-th
channel of ! contains a valid observation, and m}[k] = 0 otherwise. In the
following, for simplicity’s sake, we focus on the case where missing value affect
all the available channels at the same time, i.e., if there exist a k such that
mik = 0 then m!k = 0 at all the k-th channels'. In this setting, the notation
can be simplified by considering mask m! to be scalar, i.e., mi € {0,1}. We
denote by X; the unknown ground truth observations at time step t, i.e., the
complete observation matrix without any missing data. We assume stationarity
of missing data distribution and, in experiments, we mostly focus on the missing
at random scenario [Rubin, 1976]. We do not make any assumption about the
number of concurrent sensor failures or the length of missing data blocks; thus,
multiple failures extended over time are accounted for. Nonetheless, one should
expect imputation performance to scale with the number of concurrent faults
and the time length of missing data blocks.

Time series imputation The objective of time series imputation is to
reconstruct missing values in a sequence of input data. Considering again point
predictions, we can define the missing data reconstruction error as

t+T
— — § m -/
£ (Xuer Xeorr, th) =1 (). (6.1)

z 1

!This assumption is removed in [De Felice et al., 2024] and can be easily circumvented
by considering a heterogenous graph with multiple time series associated to each node (see
Section 3.1.1).

66 6.3 Graph Recurrent Imputation Network

where #! is the reconstructed) and M,,r and mj, are respectively the
logical binary complement of M, ., and m}. Note that, in practice, it is
impossible to have access to)A{;HT and, as a consequence, it is necessary
to define a surrogate optimization objective, e.g., by using forecasting as a
surrogate task or simulating the presence of additional missing values. In the
context of trainable, parametric, imputation methods, we consider two different
operational settings. In the first one, denoted by in-sample imputation, the
model is trained to reconstruct missing values in a given fized input sequence
X,.oor w.r.t. specific time steps. Differently, in the second setting (referred to
as out-of-sample imputation), the model is trained and evaluated w.r.t. different
time steps. Clearly, in both cases, the model is prevented from accessing the
ground-truth data used for the final evaluation. In other words, the first setting
corresponds to a transductive learning setting (both spatially and temporally)
while the second setting requires models that can perform inductive learning
along the temporal dimension. The in-sample setting simulates the case where
a practitioner fits the model directly on the sequence to fill up its gaps. The
out-of-sample scenario, instead, simulates the case where one wishes to use a
model fitted on a set of historical data to impute missing values in an unseen
target sequence.

6.3 Graph Recurrent Imputation Network

In this section, we present GRIN, a graph-based, recurrent neural architecture
for correlated time series imputation. Given a collection of time series Xy, 1
and associated mask M7, GRIN is trained to reconstruct missing values in
the input sequence by combining the information coming from both the temporal
and spatial dimensions. To do so, we design GRIN as a bidirectional GCRNN
which progressively processes the input sequence both forward and backward
in time by performing two stages of imputation for each direction. Then, an
MLP processes the representation learned by the forward and backward models
to obtain a final — refined — imputation for each point in time and space. An
overview of the complete architecture is given in Figure 6.1. As shown in the
figure, the two modules impute missing values iteratively, using at each time step
previously imputed values as input. We start by detailing the processing carried
out by the unidirectional model and then provide the bidirectional extension.
To simplify the notation, we ignore the presence of exogenous variables, which
can easily be integrated into the framework whenever present.

67 6.3 Graph Recurrent Imputation Network

cHy g ey
3 @ & i 15t STAGE 21 STAGE
_ g . { i IMPUTATION . IMPUTATION
o PN / ;
R ! ‘
T s
® £ ! '
= o} i H
3 S : { \O
g | = P e
ke SPATIOTEMPORAL (1), fud 2) fud
g ENCODER X DECODER 55, hf X,
m t
< e X, SPATIOTEMPORAL < (1).bwd SPATIOTEMPORAL —(2),bud
time X ENCODER Xy DECODER x
(O Valid observation () Missing value Final imputation Ist stage imputation () 2nd stage imputation

Figure 6.1. An overview of GRIN. Here, each unidirectional GRIN module is process-
ing the ¢-th step of 3 input time series. There is one missing value at the considered
time step. GRIN performs a first imputation, which is then processed and refined
by the spatial decoder. The second-stage imputation is then used to continue the
processing autoregressively. An MLP processes the representations obtained by the
forward and backward models to obtain final imputations. The full architecture is
trained end-to-end.

Unidirectional model Each GRIN module consists in two blocks, a spa-
tiotemporal encoder and a spatial decoder, which process the input time series in
two stages. The spatiotemporal encoder maps the input X, into a spatiotem-
poral representation Hy..,r € RV*! by exploiting a ad-hoc designed GCRNN.
The spatial decoder, instead, takes advantage of the learned representations
to perform two consecutive rounds of imputation. A first-stage imputation is
obtained from the representation by using a linear readout; the second one
exploits available relational, spatial, information at time step ¢. In particular,
the decoder is implemented by a GNN which learns to infer the observed values
at each i-th node — ! — by refining first-stage imputations and processing
representations H,; | and values observed at neighboring nodes.

6.3.1 Spatiotemporal encoder

In the encoder, the input sequence X;;,r and mask M, are processed
sequentially one step at a time, by means of a recurrent neural network with gates
implemented by message-passing layers. In particular, we leverage GRUs [Cho
et al., 2014| and, similarly to Seo et al. [2018] and Li et al. [2018], we implement
the GRU gates by relying on on MP operators (see Equation 3.12-3.15). The

68 6.3 Graph Recurrent Imputation Network

resulting message-passing GRU (MPGRU) processes the input as:

R =0 (MP ([Xt(Q)HMtHHt,l] ,a)) (6.2)
0.=0o (MP ([Xt(2)||Mt||Ht_1] ,5t>) (6.3)
C, = tanh (MP ([XfQ)HMtHRt © HH} @)) (6.4)
H, =0,0H,_,+(1-0,)6C, (6.5)

where R;, O; are the outputs of reset and update gates, respectively, H; is
the hidden representation at time ¢, and X’t@) is the output of the decoding
block at the previous time-step (see next paragraph). The symbols ® and ||
denote the Hadamard product and the concatenation operator, respectively.
The initial representations Hy can either be initialized as a constant or with a
learnable embedding. Note that the encoder is fed with predictions from the
decoder block for the steps where input data are missing, as explained in the
next subsection. By autoregressively carrying out the above computations, the
input sequences get encoded in Hy.;y 7.

6.3.2 Spatial decoder

As a first decoding step, we generate one-step-ahead predictions from hidden
representations H; by means of a global linear readout

Y,V = H, .V, + by, (6.6)

where V;, € R%*4 ig a learnable weight matrix and b, € R% is a learnable
bias vector. We then define the filler operator as

FiLL(Y;) = M, 0 X, + M, 0 Y}; (6.7)

intuitively, the filler operator replaces the missing values in the input X, with
the values at the same positions in Y;. By feeding 2(1) to the filler operator,
we get the first-stage imputation X\t(l) such that the output is X; with missing
values replaced by the one-step-ahead predictions }A’;(l). The resulting node-level
predictions are then concatenated to the mask M, and the hidden representation
H, 1, and processed by a final MP block which computes for each node an
imputation representation s. as

s'=Up(h'_,, AGGR {MSG (:&j’(l),h{ ,mj>}> . 6.8
= ur (ni . Agen 1O By i (69

69 6.3 Graph Recurrent Imputation Network

Notice that, as previously highlighted, the imputation representations only
depend on messages received from neighboring nodes and the representation
at the previous step. In fact, by aggregating only messages from the one-hop
neighborhood, the representations s! are independent of the input features x!
of the i-th node itself. This architectural bias forces the model to learn how
to reconstruct a target input by considering spatial dependencies, thus con-
straining the model to focus on observations at related time series. Tmputation
representation S; is then concatenated to hidden representation H;_; and used
to obtain second-stage imputations by using a second linear readout:

VD = [SIH)V, +b; X =Fu (V) (6.9)

Finally, we feed 5(;(2) as input to the MPGRU (Equation 6.2-6.5) to update
hidden representations and proceed to process the input; parameters can be
fitted by training the model to output accurate imputations at both the first
and second stage (see Equation 6.11 for more details).

6.3.3 Bidirectional model

Extending GRIN to account for both forward and backward dynamics is straight-
forward and can be achieved by duplicating the architecture described in the
two previous sections. The first module will process the sequence in the forward
direction (from the beginning of the sequence towards its end), while the second
will go through the input in the opposite direction. The final imputation is
then obtained with an MLP aggregating representations extracted by the two
modules:

i = MLP (s hifi st pifn) (6.10)

where fwd and bwd denote the forward and backward modules, respectively. The
final output can then be easily obtained as X\tHT = FILL(?t:HT). Note that,
by construction, our model can exploit all the available relevant spatiotemporal
information, since the only value explicitly masked out for each node is x!.
At the same time, it is important to realize that our model does not merely
reconstruct the input as an autoencoder, but it is specifically tailored for the
imputation task due to its inductive biases.

70 6.3 Graph Recurrent Imputation Network

Optimization objective The model is trained end-to-end by minimizing the
reconstruction error of all imputation stages in both directions by minimizing

L=L (Yt,t+T, Xt,t+T7 Mt,t+T)
+L (K,(tll’%wda X4, Mt7t+T> +L <1§,(2’7f~wd, X4, Mt,t+T>

+L (Yt,(tll;wd, Xy, Mt,t+T) + L (Y,;(fl’bwd, X441, Mt,t+T> ; (6.11)

where each £ (-) is of the form of Equation 6.1 and the reconstruction error
function is computed in terms of MAE. Note that here, compared to Equation 6.1,
we are using Xy qyr and M, .1 instead of ZS,H—T and Mt,t+T3 first stage
imputations are obtained as one-step-ahead forecasts, while the second stage
reconstructions include a spatial interpolation step.

6.3.4 Discussion and limitations

As we show in Section 6.5, compared to state-of-the-art imputation baselines,
GRIN offers higher flexibility and achieves better reconstruction accuracy on
several scenarios. However, it might suffer from issues typical of autoregressive
reconstruction models [Liu et al., 2019; Marisca et al., 2022]. The autoregressive
approach to imputation essentially models distributions p’(xi|X-;) and uses
one-step-ahead forecasting as a surrogate objective to learn how to recover
missing observations. A bidirectional architecture allows for similarly modeling
p'(xi|Xs:). Additional components are needed to account for spatial information
at each step, i.e., modeling p(ai|[{z”", ... }). Architectures like BRITS [Cao
et al., 2018| and GRIN, follow this scheme, with different components dedicated
to modeling dependencies backward and forward in time as well as across
time series. While being effective in practice, autoregressive methods have
multiple drawbacks. Besides the computational overhead of having separate
components, these models accumulate errors as predictions are used to bootstrap
reconstruction at subsequent steps. This problem is particularly severe with
sparse observations, where error accumulation can cause the hidden state to
drift away [Bengio et al., 2015]. Additionally, integrating information from
different modules can be challenging and may lead to further compounding of
errors and information bottlenecks (e.g., w.r.t. representations H).

71 6.4 Spatiotemporal Point Imputation Network

6.4 Spatiotemporal Point Imputation Network

To address the limitations of GRIN and related autoregressive methods, we
introduce a graph-based attention architecture, named Spatiotemporal Point
Inference Network (SPIN). SPIN directly tackles the problem of reconstructing
missing data from sparse observations and is specifically designed to perform
imputation in such a setting. The following sections provide a high-level
description of the approach; we refer to Marisca et al. [2022] for a more
detailed technical description. We start by modeling the problem of learning
a reconstruction model from a different perspective and then introduce the
operators at the core of the proposed method.

6.4.1 Model conceptualization

We assume to have available covariates U, € RV*% acting as spatiotemporal
positional encodings to localize a point in time and space (e.g., date/time
features and geographic location). Covariates u! are assumed available for each
node at each time step; if these covariates are not available they can be learned
as discussed in Section 6.4.3. To simplify the discussion, we assume the input
graph to be static. We denote as observed (source) set

Sprr = {{xh,ul) |[ml=1,7e[t,t+T)} (6.12)

the set of all observations, paired with their spatiotemporal coordinates. Con-
versely, we name target set

Tevrr ={ul |ml=0,7€t,t+T)} (6.13)

the complement set collecting the coordinates of the discrete spatiotemporal
points for which we want to reconstruct an observation. We refer to the set of
observed and target points of the i-th node as Sy, and T, r, respectively.
Then, for all u’ € Ty 7, we aim at learning a model for

P (xh|ul, Spapr, E) . (6.14)

In particular,given disjoint observed and target sets Sy, r and Tp.or, SPIN is
trained to obtain point estimates as

C&i .F(Ui,st;t+T,5; 9) (615)

=

for all discrete u! € Ty 7. SPIN learns a parameterized propagation process
where each representation, corresponding to a specific node and time step, is

72 6.4 Spatiotemporal Point Imputation Network

(~
Lx
Temporal
i Self-attention
Xooor — Observations bl o .
Embedding g S
T % S Spatiotemporal z %
>9 Cross-attention 2 4T
Covariates o S
. —> Mo O <
Usir Embedding °] j
Skip Connection

(& J

Figure 6.2. The architecture of SPIN. Observations X;.;, 7 and spatiotemporal coor-
dinates Uy, are encoded into initial representations H}, . Representations are
processed by a stack of L sparse spatiotemporal attention blocks. Final imputations
are obtained by feeding H/; ;- into an MLP.

updated by aggregating information from all the available observations acquired
at neighboring nodes weighted by input-dependent attention coefficients. Fig-
ure 6.2 shows an overview of the architecture. The next sections preset each
component in detail and provide the motivations behind each design choice.
We start by describing the propagation mechanism.

6.4.2 Sparse spatiotemporal attention

The core component of SPIN is a sparse graph-based attention block designed to
propagate information among discrete points in time and space. Leveraging the
attention mechanism, representations for at i-th node at each 7-th time step
are learned by simultaneously aggregating information from (1) the observed
set of i-th node S, 7 (2) the observed set S}, of its neighbors j € N ().
Figure 6.3 shows a schematic representation of this procedure.

Input encoder Let hi' € R% be the learned representation for the i-th node
and time step 7 at the [-th layer. The encoding is initialized as

(6.16)

T

B0 — MLP (uj) ul € Trayr
MLP (@7, u7) (27, u;) € Speer

and then updated by joint temporal and spatiotemporal attention operations.
Spatiotemporal attention-based message passing The STMPs layers at

the core of SPIN’s architecture are based on a sparse attention mechanism. We
adopt the terminology of Vaswani et al. [2017] and indicate as query the token

73 6.4 Spatiotemporal Point Imputation Network

o — N
5 Spatiotemporal Cross-attention Temporal Self-attention
; o0y ° r
s * " o AQQQ0000}
(1) h;}
B, OO
i o o
Lipr © 0 x o.
Ryt [T 11 —> | B MLP Rt
’l O,
h
ki
b CLLTTD R}
x]
k X XX . .
Tipir %0.0 time hird) Skip Connection
.....................
o/x Valid / missing observation C/ Encoding (valid / missing observation) 1O/ Missing query / valid key / missing key

Figure 6.3. SPIN’s sparse spatiotemporal attention block. The input time series (on
the left) are processed by layers that update target representations (on the right). The
figure shows the processing carried out to update the representation h®', i.e., the
representation associated with the i-th node at time step .

for which we want to compute an updated representation, key a representation
of the source tokens, and value the content representation of each token. By
assuming that the value and key for the same token have the same representation,
we introduce a Bahdanau-like [Bahdanau et al., 2015] masked attention operator

00.q = MSKATT (qo., ko:x, Mo:K) (6.17)
operating as
Tqr = MLP (qq, ki) (6.18)
my exp(W,r
gk = =1 P(Waru) (6.19)
> ko Mk exp(Warg)

K-1
0,=) agTe (6.20)

k=0

where W% are learnable weights, g, acts as query and kj, as key and value.
Note that my, € {0, 1} allows for masking out representations of the correspond-
ing value. STMP layers can then be implemented as

SiT’l = MSKATT, (hi’l, h;ép, mi:T)) Temporal self-attention (6.21)
ci’l = A(j}\/(gl; {MSKATT2 (hi’l, hi’ép, mg:T) } , Spatial cross-attention (6.22)
VIS 7
i1 il il il
h>" = MLP(hY', s>, c'), Update step (6.23)

where s& is the output of a self-attention block while, ¢! is the result of a
cross-attention between the target and neighboring time series. The STMP

74 6.4 Spatiotemporal Point Imputation Network

mechanism in Equation 6.21-6.23 implements a propagation mechanism allowing
for information to flow without relying on any recurrent or autoregressive
process.

Two-phase propagation Note that, due to masking, information does flow
from observed to target set but not vice versa. Masking out tokens in the target
set allows SPIN to propagate only representations corresponding to actual rep-
resentations, avoiding bottlenecks. As a downside, this shuts down propagation
paths going through points in the target set. This can be problematic when the
input observations are extremely sparse. To avoid this, we assume that after
a few layers, available information has already been partially propagated to
locations with missing observations and we stop masking thereafter. In practice,
we introduce a hyperparameter to control the number of layers with sparse
propagation.

Decoder After L STMP layers, representations are mapped to predictions
for all points in 7.7 with readout

Tivir = {&2 = MLP (b)) |w! € Tryir)}. (6.24)

SPIN can then be trained by considering a reconstruction loss (Equation 6.1)
and by sampling a subset of the available observations to act as the target set
for each sample in a training batch.

6.4.3 Spatiotemporal positional encoding

The above sections assumed that covariates U, can act as positional encodings
for each observation across time and space. These covariates can be directly
extracted from available exogenous information (e.g., sensor location and date/-
time features) or learned end-to-end jointly with the other model parameters. In
practice, we use node-independent temporal encodings w; € R% combined with
static node attributes v' € R% for the spatial components. Target covariates
are then obtained as

u; = MLP (w;, ¢') . (6.25)

We obtain the temporal encodings w; as sine and cosine transforms of the time
step ¢ w.r.t. seasonalities (e.g., day and/or week); while we use learnable node
embeddings as node attributes (see Chapter 5). Several alternative methods
to obtain the encodings can be considered |[Kazemi et al., 2019; Dwivedi et al.,
2022].

75 6.5 Empirical results

6.4.4 Discussion and limitations

While SPIN can account for the shortcomings of GRIN in processing sparse
observations (see Section 6.5), it can result in severe computational setbacks in
certain scenarios. The proposed spatiotemporal attention mechanism can be
viewed as performing attention over the product graph between space and time
dimensions — with some connections pruned w.r.t. unavailable data. Computing
attention coefficient on such a graph has time and memory complexities that
scale with O ((N + |€])T?). To enable applications of the proposed method to
large graphs and long time horizons, we consider two different approaches. The
straightforward approach consists of training the model by exploiting graph
subsampling, using one of the many possible subsampling strategies from the
literature (e.g., [Zeng et al., 2020]). In practice, at training time, we sample
a k-hop subgraph centered on n target nodes and then compute the loss only
w.r.t. these n nodes. Computational costs can then be reduced by acting on n
and k.

Hierarchical attention An interesting and orthogonal approach to reduce
computational costs is to rewire the attention mechanism to be hierarchi-
cal |[Ravula et al., 2020]. In particular, a hierarchical masked attention block
MSKATT-H (-) can be implemented by adding Z dummy tokens to act as hubs
for propagation as

20,7 = MSKATT; (20.2, ko.x, Mo) (6.26)
00.Q = MSKATT2 (q02Q7 Z6:Z7 10:Z) ,

where 1.z simply indicates a sequence of ones. Replacing all the attention
operators in Equation 6.21-6.23 with the above reduces the spatiotemporal
attention complexity to O (N + |£])TZ) with Z < T, at the cost of introducing
an information bottleneck. We initialize the representation of the attention
hubs at layer [= 0 as trainable parameters. The performance of the hierarchical
version of the model will be addressed in Section 6.5.

6.5 Empirical results

In the following, we evaluate the introduced imputation methods against base-
lines from the state of the art. We refer to the reference papers and Appendix F
for more details and additional results [Cini et al., 2022b; Marisca et al., 2022;
De Felice et al., 2024].

76 6.5 Empirical results

Datasets We run experiments on the METR-LA, PEMS-BAY and AQI
datasets. We also a consider a smaller version of AQI (denoted by AQI-36)
with only the 36 sensors scattered over the city of Beijing: a popular benchmark
for imputation [Yi et al., 2016; Cao et al., 2018]. In METR-LA and PEMS-BAY,
we inject missing data following two different policies: 1) Block missing, where
we simulate at each time step a failure with 0.15% probability and sample its
duration (in terms of steps) uniformly in the interval [12, 48] (on top of this an
additional 5% of the available data is randomly masked out); 2) Point missing,
in which we simply randomly drop 25% of the available data. In all settings,
the simulated missing data are masked out during training and are used as
targets for evaluation. For the air quality datasets, we use the evaluation splits
and masks of previous works, which are obtained by replicating the missing
data distribution observed in certain months [Yi et al., 2016; Cao et al., 2018;
Marisca et al., 2022].

Baselines We compare our methods against imputation methods from the
deep learning literature: 1) BRITS [Cao et al., 2018], which is based on a
bidirectional RNN; 2) rGAIN |[Cini et al., 2022b]|, an adversarial approach
based on GAIN [Yoon et al., 2018] and SSGAN [Miao et al., 2021]; 3) STTr,
a standard Transformer [Vaswani et al., 2017| with attention being applied
across both time and space; 4) SAITS [Du et al., 2023], a recent attention-
based architecture based on diagonally-masked self-attention. Besides neural
networks, we also consider simpler commonly used imputation methods: 5)
MEAN, i.e., imputation using the node-level average; 6) KNN, i.e., imputation
by averaging values of the k& = 10 neighboring nodes with the highest weight in
the adjacency matrix Wy; 7) MICE |White et al., 2011], limiting the maximum
number of iterations to 100 and the number of nearest features to 10; 8)
Matrix Factorization (MF) with rank = 10 [Rubinsteyn and Feldman, 2016];
9) VAR, i.e., a Vector Autoregressive one-step-ahead predictor [Hyndman
et al., 2008]. Additionally, we also use as baseline 10) MPGRU, i.e., the
unidirectional version of GRIN with the spatial decoder replaced by a simple
MLP. For both MPGRU and GRIN we implement MP layers with diffusion
convolutions [Atwood and Towsley, 2016] analogously to DCRNN |[Li et al.,
2018] and set the number of diffusion steps to K = 2.

6.5.1 In-sample and out-of-sample imputation

We start by considering in-sample and out-of-sample imputation on the air
quality datasets. The objective of this experiment is to assess the performance

71 6.5 Empirical results

of GRIN against commonly used imputation methods. Table 6.1 shows the
results of the experiment. In the in-sample settings, we compute metrics
using as imputation the value obtained by averaging predictions over all the
overlapping windows; in the out-of-sample settings, instead, we simply report
results by averaging the reconstruction error over windows. Note that the
matrix factorization baseline cannot be applied to the out-of-sample setting.
GRIN largely outperforms other non-graph-based baselines in each scenario.
In particular, in the latter case, GRIN decreases MAE w.r.t. the closest non-
graph-based baseline by more than 20% in AQI. Performance improvements
over MPGRU show the impact of the introduced designs. Interestingly, GRIN
consistently outperforms BRITS in imputing missing values also for sensors
corresponding to isolated (disconnected) nodes, i.e., nodes corresponding to
stations more than 40 km away from any other station: this is empirical evidence
of the positive regularizations brought by the global reconstruction approach
implemented by GRIN. Our method achieves more accurate imputation also in
the 36-dimensional dataset, where one could expect the graph representation to
have a lower impact.

6.5.2 Imputation benchmarks

In the second set of experiments, we compare both GRIN and SPIN against
state-of-the-art baselines including attention-based models. Additionally, we
also report performance for the SPIN variant based on hierarchical atten-
tion (Section 6.4.4), denoted by SPIN-H. Here we focus on the out-of-sample
scenario and consider both air quality and traffic datasets. Table 6.2 reports the
results of the experiments. The introduced methods outperform the baselines
in all considered setting. Unsurprisingly, SPIN’s performance improvements
over GRIN are more evident when entire blocks of data are missing, as in the
AQI datasets and Block missing settings. Conversely, in the Point missing
setting, SPIN performs on par with GRIN. With respect to STTr, i.e., the
spatiotemporal Transformer baselines, SPIN and GRIN perform drastically
better in most of the considered settings. In almost all cases, SPIN-H performs
on par with the base mode (even better in some cases); these results qualify
SPIN-H as a valid, less computationally demanding, alternative.

Sensitivity analysis We then compare the different methods in scenarios
with increasing levels of data sparsity. In the first setting, the missing rate
is progressively increased by associating with each observation an increasing
probability of being removed; this corresponds to a sparser version of the Point

78 6.5 Empirical results

Table 6.1. Imputation results on the air datasets in the in-sample and out-of-sample
settings. Performance averaged over 5 runs.

In-sample Out-of-sample
MODEL
MAE MSE MRE (%)| MAE MSE MRE (%)
Mean 53.48 4578.08 76.77 53.48 4578.08 76.77
KNN 30.21 2892.31 43.36 30.21 2892.31 43.36
MF 30.54+026 2763.06x63.35 43.84+0.38 - - -
2 | MICE 29.89=011 2575.53+0m.67 42.90+0.15| 30.37x0.00 2594.06+07.17 43.59+0.13
5, VAR 13.16x021 513.90+1230 18.89+031| 15.64x008 833.46+1385 22.02+011
< |[rGAIN | 12.234017 393.76+1266 17.55x025| 15.371026 641.9213380 21.63x0.36

BRITS 12.244026 495.9444356 17.57x03s| 14.50+035 662.36+05.16 20.41+0.50
MPGRU| 12.46+035 517.21+4102 17.88x050| 16.79+052 1103.04+10683 23.63+0.73
GRIN [10.51+0.28 371.47+17.38 15.09+0.40(12.08+0.47 523.14+57.17 17.00+0.67

Mean 39.60 3231.04 59.25 39.60 3231.04 99.25
KNN 34.10 3471.14 51.02 34.10 3471.14 51.02
MF 26.7440.24 2021.4442708 40.01x0.35

MICE 26.39+0.13 1872.53 41597 39.49+0.19| 26.98+0.10 1930.92+1008 40.37+0.15
VAR 18.13 4080 918.6845655 27.1341.26| 22.954030 1402.84 45263 33.99+0.44
rGAIN 17.694017 861.66117.49 26.48+0.25| 21.78x050 1274.9346028 32.26+0.75
BRITS 172440013 924.3441826 25.7940.20| 20.214022 1157.8942566 29.9440.33
MPGRU 15.8010,05 816.39105,99 23.63j:0.08 18.76i0,11 1194.35i15.23 27.79j:0.16
GRIN [13.10+0.08 615.80+10.09 19.60+0.11|14.73+0.15 775.91428.49 21.8210.23

AQI

missing scenario of the previous experiment. In the second case, we instead
operate in the Block missing setting by increasing the probability py of a failure
at each step, i.e., the probability for each sensor of going offline for a random
number s € [12,36] of future (consecutive) time steps. In practice, we test
the models on the same test split of the previous experiment but change the
evaluation masks. Note that higher missing rates and failure probabilities
correspond to longer blocks of contiguous missing values. In the Block missing
case, failure probabilities p;5%, p; = 10%, and p; = 15% correspond to a
missing rate of ~ 70-75%, ~ 90-92%, and &~ 96-97%, respectively. We use the
models trained for the experiments shown in Table 6.2; in particular, for the
traffic datasets, we use models trained on the Point missing setting. Table 6.3
and Table 6.4 show the results of the experiment. Both GRIN and SPIN
outperform the baselines; however, SPIN shows to be much more robust to
changes in the missing data distribution. Notably, compared to GRIN, the
performance of SPIN deteriorates at a much slower rate as the sparsity of the
data increases.

79 6.5 Empirical results

Table 6.2. Reconstruction MAE averaged over 5 independent runs.

Block missing Point missing | Simulated failures

MODEL
PEMS-BAY METR-LA | PEMS-BAY METR-LA AQI-36 AQI

Mean 5.46+.00 7.48+.00 5.42+00 7.56+.00| 53.48+00 39.60+.00
KNN 4.30+00 7.79+.00| 4.30+00 7.88+.00| 30.21+.00 34.10+.00
MICE 294102 4.22:05| 3.09+02 4.42:07] 30.37+00 26.98+.10
VAR 2.09+10 3.11x0s| 1.30x00 2.69+00| 15.64+108 22.95+30
rGAIN 218101 2.90+.01 1.88+02 2.83+.01] 15.37+.26 21.78+.50
BRITS 1.70401 2.34+01| 147400 2.34+.00| 14.50+35 20.21+22
SAITS 1.56+.01 2.30+.01| 1.40+03 2.26+.00| 18.16+42 21.33+.15
STTr 170402 3.541.00| 0.74+00 2.16+.00| 11.98+55 18.11+25

GRIN 1.14+01 2.03+.00| 0.67+.00 1.914.00| 12.08+47 14.73+.15
SPIN | 1.06+.02 1.98+.01| 0.70x01 1.90+.01| 11.77+51 13.924.15
SPIN-H| 1.05+.01 2.05+02| 0.73+01 1.96+.03)/10.89+.27 14.41+.13

6.5.3 Virtual sensing

As a final experiment, we also provide a quantitative and qualitative assessment
of GRIN in virtual sensing (see related discussion in Section 6.1.1). The idea is
to simulate the presence of a sensor by adding a node with no available data
and, then, let the model reconstruct the corresponding time series. Note that
for the approach to work, several assumptions are needed: 1) we have to assume
that the physical quantity being monitored can be completely reconstructed
from observations at neighboring sensors; 2) we should assume a high degree of
homogeneity of sensors (e.g., in the case of air quality stations we should assume
that sensors are placed at the same height) or that the features characterizing
each neighboring sensor (e.g., placement) are available to the model. In this
context, it is worth noting that, due to the inductive biases embedded in the
model, GRIN performs reconstruction not only by minimizing reconstruction
error at the single node, but by regularizing the reconstructed value for im-
putation at neighboring sensors (as the model autoregressively relies on its
predictions). The objective of this experiment is to show the flexibility and
application potential of the proposed methodology. As discussed in Section 6.1.1,
GDL methods explicitly targeting virtual sensing applications exist [Wu et al.,
2021b; Zheng et al., 2023; Xu et al., 2023] and are object of active research. A
comprehensive treatment of the topic is however out of scope here; we refer to
[De Felice et al., 2024] for a recent example of a comprehensive GDL framework
for virtual sensing.

80

6.6 Discussion and future directions

Table 6.3. Performance (MAE) with increasing data sparsity in the Point missing
setting (averaged over 5 evaluation masks).

METR-LA PEMS-BAY AQI
MoODEL Missing rate Missing rate Missing rate
50 % 75 % 95 % 50 % 75 % 9 % 50 % 75 % 95 %

BRITS | 2.52+00 3.02+.00 5.19+.02| 1.55+00 2.17+00 3.91:02]14.90+.03 18.29+.05 29.83+.07
SAITS | 2.48:00 3.74+01 6.72+01] 1.50x00 2.96+.01 7.40+01|15.36+.02 20.64+.05 34.57+.05

STTr 2.31+00 2.71+00 5.13x01| 0.85+00 1.13+00 2.70x01| 9.11+02 12.56+05 25.65+11
GRIN | 2.05200 2.39+00 4.08+.02{0.79+.00 1.09+.00 2.70+01| 8.43+.01 10.97+.02 20.38+.10
SPIN | 2.02+0 2.24+00 2.89+.01/0.79+.00 1.00+00 1.71+00|8.15+.01 9.96+.02 15.51+.08
SPIN-H [2.01+.00 2.20+.00 2.82+.00|/0.79+.00 0.97+.00 1.68+.00| 8.67+.02 10.27+.02 15.75+.07

Table 6.4. Performance (MAE) with an increasing number of simulated failures in
the Block missing setting (averaged over 5 evaluation masks).

METR-LA PEMS-BAY AQI
MODEL Failure probability Failure probability Failure probability
5% 10 % 15 % 5% 0% 15% 5% 10 % 15 %

BRITS | 5.87+03 7.26+06 8.29+07| 4.14+05 5.41+0s 5.84x0a| 24.09+30 31.90+26 37.62+.42
SAITS | 4.73+07 6.66+05 7.27+03| 3.88+00 7.62:21 8.01xa1| 20.78+30 30.16+30 36.34+3s

STTr | 6.03+04 7.19+05 8.06+05| 3.69+06 5.09+05s 6.02+04| 29.21235 33.62+16 37.31+14
GRIN | 3.0500: 452500 5.82200] 2.26205 345000 4.35201 15.62525 2208+ 29.03240
SPIN | 2.71+02 3.32+02 3.87+.05|1.78+.08 2.15+.08 2.41+.02{14.29+.24 18.71+.30 24.34+.46
SPIN-H |2.64+.02 3.17+.02 3.61+.04|1.751+.0a 2.16+.08 2.48+02|14.55+.26 19.37T+.36 25.38+.37

We masked out observed values of the two nodes of AQI-36 with highest (sta-
tion no. 1014) and lowest (no. 1031) connectivity, and trained GRIN on the
remaining part of the data. Results in Figure 6.4 qualitatively show that GRIN
can infer the trend and scale for unseen sensors. In terms of MAE, GRIN scores
11.74 for sensor 1014 and 20.00 for sensor 1031 (averages over 5 independent

runs).

6.6 Discussion and future directions

GRIN and SPIN have been among the first GDL approaches for time series
imputation. GDL approaches are now well-established and key tools for dealing

with irregular spatiotemporal data with many applications in relevant domains.

81 6.6 Discussion and future directions

~--= Truth —— GRIN
S
=
S
=
“& 150
2100 8
- .
o 507 g
=
Q‘ T T T T
Jun—19 12100 Jun—20 12100
2014—Jun—20

Figure 6.4. Reconstruction of observations from sensors removed from the training
set. Plots show that GRIN might be used for virtual sensing.

Future directions Future research might explore the design of scalable
imputation architectures (e.g., exploiting the approaches discussed in Chapter 8)
and methods to quantify the uncertainty of the reconstruction. Additionally, it
might be interesting to assess the theoretical conditions that would guarantee
accurate imputation given given a characterization of the dependencies among
time series. Future work might also explore methods to make forecasts directly
from irregular data, bypassing the reconstruction step. Although research on
the topic of graph-based methods in this context is limited [Zhong et al., 2021;
Marisca et al., 2024|, many of the operators used in imputation models can
potentially be adapted to build forecasting architectures.

82

6.6 Discussion and future directions

Chapter 7

Latent graph learning

This chapter deals with the problem of learning latent graph structures (Chal-
lenge 3). As we discussed, standard STGNNs rely on a predefined pairwise
relationships that come with the time series collection. The available relational
information, however, can be inaccurate or inadequate for modeling the relevant
dependencies. In other cases, relational information might be completely missing.
Relational architectural biases can be exploited nonethless by learning a graph
end-to-end with the forecasting architecture. In the following, we provide an
in-depth discussion of possible methods to deal with the problem and identify a
core challenge for applying such methods in practical applications, i.e., learning
a graph while keeping MP operations sparse through the training procedure.
For this purpose, within a probabilistic framework, we propose score-based
gradient estimators to efficiently and effectively learn latent graph structures for
time series forecasting. Section 7.1 introduces the topic and discusses different
graph learning paradigms and related work. Section 7.2 provide preliminary
concepts needed for introducing our approach. Section 7.3 then formally defines
the problem setting in which we operate and discusses the core challenge in
efficiently learning graph structures. The proposed score-based estimators and
learning architecture are introduced in Section 7.4. We then address variance
reduced estimators in Section 7.5 and 7.6.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning
from spatiotemporal time series. Journal of Machine Learning Research,
24(242):1-36, 2023d

83

84 7.1 Latent graph learning

7.1 Latent graph learning

The interest in the graph learning problem arises from many practical concerns.
In the first place, learning existing relationships among time series that better
explain an observed phenomenon is worth the investigation on its own; as a
matter of fact, graph identification is a well-known problem in graph signal
processing [Dong et al., 2016, 2019]. In GDL, graph learning modules are
usually trained together with a GNN to maximize performance on a downstream
task [Franceschi et al., 2019; Kipf et al., 2018; Kazi et al., 2022]. A widely
adopted deep learning approach to the problem of modeling relationships
consists of exploiting attention-like mechanisms to score the reciprocal salience
of different spatial locations [Satorras et al., 2022; Rampasek et al., 2022].
However, despite their effectiveness, pure attention-based methods have two
major downsides compared to graph-based learning: they (1) do not allow for
the sparse computation enabled by the discrete nature of graphs and (2) do not
take advantage of structure, introduced by the graph topology, as an inductive
bias for the learning system. In our settings, sparse computation allows STGNNs
to scale in terms of layers and number of time series that are possible to process.
At the same time, sparse graphs constrain learned representations and mitigate
over-fitting. Consequently, graph structure learning methods ought to learn
meaningful dependencies while ideally allowing for sparse computations in the
downstream MP layers.

Learning discrete graph structures Learning a graph, then, translates into
learning a discrete relational structure among discrete entities. Learning discrete
representations poses many challenges for deep learning methods [Niculae et al.,
2023] due to issues in . The following subsections provide a critical overview of
the most common approaches.

7.1.1 Learning an adjacency matrix

Most STGNNSs rely on learning an adjacency matrix A as a function of a matrix
of edge scores ® € RV*VN as

A=¢(®) with @ =1, (7.1)

where 1) are learnable parameters, and £(-) indicates a nonlinear activation
function that can be used to induce sparsity in the resulting adjacency matrix,
e.g., by thresholding the scores s.t. Ali, j] = 1 if ®[i, j] > ¢ and 0 otherwise.

85 7.1 Latent graph learning

This approach results in exactly N? additional learning parameters; a cost that
can be amortized, e.g., by factorizing the score matrix ® as

A=¢(®) with @ =®,.P], (7.2)

where ®,.., B, € RV*% are can node embeddings obtained, e.g., as tables of
learnable parameters, which results in O(Nd,) parameters. Such factorization
approach has been pioneered in the context of STGNNs by the already cited
GraphWaveNet architecture [Wu et al., 2019|, where £(-) is implemented by a
ReLU followed by a row-wise softmax activation. Several other methods have
followed this direction which is quite flexible [Bai et al., 2020; Oreshkin et al.,
2021; Liu et al., 2022]. To make the number of parameters independent from
the number of nodes and condition the embeddings on the input window, scores
can be computed similarly to attention coefficients as

A, =£(®) with &, = (HW,,) (HW,)", (7.3)
zz - SEQENC (‘,‘CifW:ﬁ uifW:tJ ’Ui; 1/))) (74)

where Wy,.., W, € R%*%: are learnable weight matrices and SEQENC(+) indi-
cates a generic sequence encoder (e.g., an RNN) with learnable parameters).
Dynamic edge scores can also be computed as a nonlinear function of source
and target node representations ki and h! (similarly to Bahdanau attention
attention scores [Bahdanau et al., 2015]), e.g, as

A, =£(®,) with ®,[i, j] = MLP(h!, h)). (7.5)

Drawbacks of the direct approach The drawback of directly learning an
adjacency matrix is that related methods often result in a dense A matrix which
makes any subsequent MP operation scale with O(N?) rather than with O(|&])*.
Among the existing methods, MTGNN [Wu et al., 2020] and GDN [Deng and
Hooi, 2021] sparsify the learned factorized adjacency by selecting, for each
node, the K edges associated with the largest weights. Zhang et al. [2022]
follow a different approach based on the idea of sparsifying the learned graph
by thresholding the average of learned attention scores. However, making A
sparse by using hard thresholds results in sparse gradients which may prevent
the associated scores from being updated during training. A different approach
consists of adopting a probabilistic perspective.

INote that this is on top of the additional computation required to compute edge scores.

86 7.1 Latent graph learning

7.1.2 Learning distributions over graphs

Instead of directly learning a graph, probabilistic methods learn a probability
distribution over graphs p,,(A) such that graphs sampled from ps maximize
the performance at task. The probabilistic approach allows for the embedding
of priors directly into p,, enabling the learning of sparse graphs as realizations
of a discrete probability distribution. For example, one can consider graph
distributions py, such that

A ~ py,(Ar), (7.6)

where p,, is parameterized by edge scores ®, obtained by adopting any of
the parameterizations discussed in the previous paragraph. For example, the
graph distribution can be, e.g., implemented by considering a Bernoulli variable
associated with each edge as

A.li, j] ~ Bernoulli(o (D[, j])), (7.7)

or by considering more complex distributions such as top-K samplers [Cini
et al., 2023d; Kazi et al., 2022; Paulus et al., 2020; Ahmed et al., 2023] (see
Section 7.4.2). As an example, consider a cost function §;(-) (e.g., the forecasting
accuracy) associated with each time step ¢ and dependent on the inferred graph.
The core challenge in learning p,; is to estimate

V¢EANP¢ [515(‘4)]) (78)

i.e., the gradient of the expected cost d;(A) with respect to the distributional
parameters 1 under the sampling of A from p,.

Path-wise and straight-through estimators Among existing probabilistic
methods, Kipf et al. [2018] introduce NRI, a latent variable model for predicting
the interactions of physical objects by learning discrete edge attributes of a
fully connected graph. Shang and Chen [2021] introduce GTS by simplifying
the NRI module by considering only binary relationships and integrates the
graph inference module in a recurrent STGNN [Li et al., 2018]. To learn
Py and estimate the gradient in Equation 7.8, both NRI and GTS exploit
path-wise gradient estimators |Glasserman and Ho, 1991; Kingma and Welling,
2013] based on the categorical Gumbel parametrization trick [Maddison et al.,
2017; Jang et al., 2017]. In particular, they reparametrize the sampling of A
from py, as A = g(e, 1), with deterministic function g decoupling parameters
1 from the random component ¢ ~ py. In practice, these methods rely on

87 7.1 Latent graph learning

continuous relaxations of discrete distributions and, then, can suffer from the
same computational setbacks of the methods discussed in Section 7.1.1. Similar
arguments can be made for methods based on straight-through estimators [Bengio
et al., 2013| that keep discrete representations sparse in the forward pass but
would still require to compute messages associated with each potential edge for
backpropagation.

Score-based sparse graph learning Differently from previous work, in
the following we adopt the framework of score-function (SF) gradient estima-
tors [Rubinstein, 1969; Glynn, 1990; Williams, 1992] by relying on the rewriting
of Equation 7.8 as

VyEaup, [0(A)] = Eanp, [0:(A)Vy log py(A)] (7.9)

which, as detailed in Section 7.4.1, will allow for preserving the sparsity of the
sampled graphs and the scalability of the subsequent processing steps (e.g., the
forward and backward passes of a MP network). In particular, as anticipated,
the SF approach allows for obtaining unbiased Monte Carlo (MC) estimates
where the gradient is computed only w.r.t. the likelihood of the graph being
sampled and any downstream processing is treated like a black box. Within
our context, we show that score-based estimators are particularly appealing
as, differently from path-wise alternatives, they do not compute derivatives
w.r.t. the MP procedure and, as such, allow for sparse computations at training
time. The drawback of standard score-based estimators is, however, their
inherently high variance. To address this issue, we will introduce variance-
reduced estimators (Section 7.5) for specific graph distributions by exploiting
control covariates and a surrogate training objective (Section 7.6), keeping the
computation sparse.

7.1.3 Related work

Besides the already discussed forecasting applications, the problem of latent
graph learning and relational inference has been the subject of extensive research.
There have been several follow-ups to the NRI model, e.g., refinements of the
MP architecture Chen et al. [2021c|, or related to modeling dynamic [Graber
and Schwing, 2020; Gong et al., 2021] and heterogeneous [Webb et al., 2019]
dependencies. Alet et al. [2019] propose a meta-learning learning approach to
infer graph structures at test time after training on data where ground truth
graphs are available. Latent graph learning has also been studied in the context

88 7.1 Latent graph learning

of static graphs. Notably, Franceschi et al. [2019] propose a bi-level optimization
routine to learn graphs based on the straight-through estimator. Kazi et al.
[2022] uses the Gumbel-Top-K trick [Kool et al., 2019] to sample K-nearest-
neighbors graphs and learn edge scores by using a heuristic that increases
the likelihood of sampling edges contributing to correct classifications. This
approach has been extended to learn higher-order structures as well [Battiloro
et al., 2024]. More recently, Wren et al. [2022]| learn DAGs end-to-end by
exploiting implicit maximum likelihood estimation [Niepert et al., 2021|. As
already mentioned, the problem has also been studied from the graph signal
processing perspective [Dong et al., 2019, e.g., assuming that smoothness of the
node features w.r.t. a learned graph Laplacian [Dong et al., 2016|. Related to
the graph learning problem, graph rewiring consists of adding and/or removing
edges of the input (predefined) graph to improve performance at task |[Topping
et al., 2022; Di Giovanni et al., 2023; Gutteridge et al., 2023; Barbero et al.,
2024]. In particular, probabilistic methods have been recently applied to graph
rewiring, e.g., by estimating distributions over edges that should dropped or
added [Qian et al., 2024a| or to connect existing nodes to hubs that enable
long-distance communication |Qian et al., 2024b|. Similarly, Errica et al. [2023]
uses a probabilistic approach to design GNNs with adaptive receptive fields.
Along with methods explicitly targeting graphs, the problem of learning
discrete structures has been widely studied in deep learning and general machine
learning [Niculae et al., 2023]. As alternatives to methods relying on continuous
relaxations and path-wise estimators [Jang et al., 2017; Maddison et al., 2017;
Paulus et al., 2020], several approaches tackled the problem by exploiting score-
based estimators and variance reduction techniques, e.g., relying on control
variates derived from continuous relaxations [Tucker et al., 2017; Grathwohl
et al., 2018] and data-driven baselines [Mnih and Gregor, 2014|. In particular,
related to our method, Rennie et al. [2017] use a greedy baseline based on the
mode of the distribute’ion being learned, while Kool et al. [2020] constructs
a variance-reduced estimator based on sampling without replacement from
the discrete distribution. Beyond score-based and path-wise methods, Correia
et al. [2020] take a different approach by considering sparse distributions where
analytically computing the gradient becomes tractable. Niepert et al. [2021]
introduce a class of estimators, based on maximum-likelihood estimation, that
generalize the straight-through estimator [Bengio et al., 2013| to more complex
distributions; Minervini et al. [2023] make such estimators adaptive to balance
the bias of the estimator and the sparsity of the gradients. Several structure
learning methods rely on methods to sample subsets Kool et al. [2019]. In
particular, Xie and Ermon [2019] introduce a continuous relaxation and a

89 7.2 Preliminaries

reparametrization trick for subset sampling. Conversely, Ahmed et al. [2023]
introduces gradient estimators based on the straight-through approach and a
parametrization of the distribution that allows for efficient computation of the
exact marginal distribution. We refer to Mohamed et al. [2020] and Niculae
et al. [2023] for an in-depth discussion of the topic. None of these methods
specifically target graph distributions, nor consider sparsity of the downstream
computations (at training time) as a requirement.

7.2 Preliminaries

The section introduces some preliminary concepts and provides the reference
settings to support the theoretical and technical derivations presented in the
next sections.

7.2.1 Reference settings

We consider the problem settings introduced in Chapter 2 and indicate the set
of N entities (sensors) generating the data as S = {1,2,..., N}. We focus on
modeling binary relationships adjeciency matrices A € {0, 1}*¥ i.e., we do not
account for possible weights associated to each edge. Extensions of the following
to learning categorical or continuous edge attributes are possible (see Section 7.8),
but out of scope. Dynamic relationships can be modeled by considering dynamic
adjacency matrices A;; in the following, we omit the temporal index as the
methodology can be applied to learn both static and temporal dependencies
by exploiting the parameterizations anticipated in Section 7.1 and further
discussed in Section 7.4.2. Furthermore, to keep the notation compact, we
use interchangeably subscripts and square brackets for indexing matrices, i.e,
A;; = Ali, j| indicate the entry of matrix A corresponding to the i-th row and
j-th column. Although we focus on multi-step-ahead time series forecasting,
the following can be extended to any other downstream task (e.g., time series
regression and/or classification) at both the graph and node level.

7.2.2 Mean adjacency matrices

In this section, we provide some tools to deal with probability distributions over
graphs. Notably, many well-established probabilistic and statistical tools cannot
directly be applied to graphs given they are not embedded in an Euclidean
space. An example is the notion of “expected” graph that will be important

90 7.2 Preliminaries

for the estimators introduced in Section 7.5 and whose definition needs to be
extended. Here, we do so by following Fréchet [1948)].

Given a generic random vector & € R characterized by probability density
function p, the expected value of is denoted by

Byl = / 2 p(a) de (7.10)

is a weighted average over x; we interchangeably use notation E,[x] and E[x]
to indicate the same quantity. Notably, E,.,[x] can be equivalently rewritten
as

Epplx] = arg min Fa(x'), (7.11)

x’'eRZ

where §(-) denotes the Fréchet function
Fa(@') = Eop [l — 23] (7.12)

associated with p and the squared Euclidean distance |-||3. Following Equa-
tion 7.11 and 7.12, we can derive a generalized definition of mean for non-
Euclidean data by relying on alternative notions of distance. Similarly, it is
possible to define the Fréchet sample mean as a generalization of the concept of
sample mean [Jain, 2016].

Consider, then, a subset A C {0, 1}"*¥ of adjacency matrices A over the
node (sensor) set S; each subset can be selected to satisfy specific constraints.
For example, undirected graphs are characterized by the subset of symmetric
matrices. Conversely, K-NN graphs correspond to the subset

A= {A e {0, 1}V ZAij =k, w}. (7.13)

j=1

Equipping A with a metric distance allows us to define a Fréchet function
analogous to that of Equation 7.12. Here we consider the Hamming distance

H(A A = Z (A # A}) (7.14)

where A, A’ € A and [is the indicator function such that I(a) = 1, if a is
true, 0 otherwise. The Hamming distance counts the number of mismatches
between the entries of A and A’, and is then a natural choice to measure the
dissimilarity between two graphs.

91 7.3 Problem formulation

For random matrices A ~ p and for all A’ € A, we define the Fréchet
function over (A, H) as

Su(A') =FEa, [H(A A). (7.15)
Then, we define as Fréchet mean adjacency matriz any matrix A* such that

A" € argminFy(A'). (7.16)
A'cA
A matrix A" always exists in A, as A is a finite set, but, in general, is not
unique. Properties and uniqueness conditions of the Fréchet mean in the context
of graph-structured data have been studied in the literature, e.g., by Jain [2016].
Throughout the chapter, we use the term “Fréchet mean” referring to any
Fréchet mean of a given distribution.

7.3 Problem formulation

This section provides a precise formulation of the probabilistic graph learning
problem in correlated time series and defines the operational framework in
which we operate.

7.3.1 Graph learning from correlated time series

Given a window of W past observations X;_w. = (X;_w., Uy_w., V') open on
the time series, we consider the multi-step ahead time series forecasting problem,
the family of predictors F(- ;0), and parametric probability distribution py,
over graphs such that

)/(\t:tJrH =F (Xt—W:t) At; 0)) At ~ Dy (A|Xt—W:t> s (7-17>

where 0, 1 are the model parameters. The joint graph and model learning
problem consists in jointly learning parameters 6, 1) by solving the optimization
problem

~ ~

1w .
0,4 = arg min 7 ; L, (0,9), Li(0,%) =Eap, [6,(A;;0)], (7.18)

where £, (0,1)) is the optimization objective at time step t expressed as the
expectation, over the graph distribution p,,, of the cost (loss) function 6,(A¢; 6),
ie.,

5t(At; 9) =/ (]: (Xt—W:ta Ay 9) 7Xt:t+H) (7-19>

92 7.3 Problem formulation

where ¢(-) can be any error function (see Section 2.2.1). Note that in Equa-
tion 7.17 the distribution of A, at time step ¢ is conditioned on the most recent
observations X;_y .+, hence modeling a scenario associated with a dynamic graph
distribution. In the case of static dependencies, it is enough to remove the
conditioning on X;_y ;. As in the previous chapters, we consider predictors
F(-;0) implemented by STGNNs based on the MP framework and following
either the T'TS or T&S paradigm. F(- ;) can also consider different graphs
and graph distributions at each MP layer. Section 7.5 provides a thorough
discussion of this setup.

Meaning of the graphs being learned Note that under this problem
setting, the model family and the downstream task have an impact on the
type of relationships being learned. For example, different models will yield
different results that will depend also on the number of layers and the choice
of MP operators. Ultimately, the learned graph distribution is the one that
best explains the observed data given the the predictive model and the chosen
family of graph distributions. Notably, different parametrizations of p,, allow
the practitioner for embedding different inductive biases (such as sparsity) as
structural priors into the processing.

7.3.2 Core challenge

As anticipated in Section 7.1, minimizing the sum of expectations £, (6, 1)) over
t=1,...,T, is challenging, as it involves estimating the gradients VL, (8,)
w.r.t. the parameters of the discrete distribution p,, over (binary) adjacency
matrices. The most common approach to estimate the gradient is to rely on the
Monte Carlo method [Metropolis and Ulam, 1949], i.e., on sampling graphs from
the distribution p,. However, estimating gradients w.r.t. the parameters of
the distribution being sampled is not trivial and require ad-hoc techniques (see
Section 7.4.1) which introduce trade-offs in the computational and sample
complexity.

Stochastic computational graphs Sampling matrices (graphs) A ~ py,
throughout the learning process results in a stochastic computational graph
(CG) and, while automatic differentiation of CGs is a core component of modern
deep learning libraries [Paszke et al., 2019; Abadi et al., 2015], dealing with
stochastic nodes introduces additional challenges as the gradients have to
be estimated w.r.t. expectations over the sampling of the associated random
variables [Schulman et al., 2015; Weber et al., 2019; Mohamed et al., 2020]. Tools

93 7.4 Score-based graph learning from correlated time series

for automatic differentiation of stochastic CGs are being developed |[Foerster
et al., 2018; Bingham et al., 2019; van Krieken et al., 2021; Dillon et al., 2017];
however, general approaches can be ineffective and prone to failure, especially
in the case of discrete distributions (see also Mohamed et al. 2020).

Stochastic computational graphs and message passing In our setup,
messages exchanged among nodes are stochastic themselves, i.e., sampling
graph from p, results in a stochastic message-passing graph (MPG). Having a
stochastic MPG is problematic: the MP paradigm constrains the flow of spatial
information, making the CG dependent on the MPG. Moreover, a stochastic
MPG introduces N? stochastic nodes in the resulting CG (i.e., one for each
potential edge in MPGQG), leading to a large number of paths data can flow
through. For instance, by considering an L-layered architecture, the number
of stochastic nodes can increase up to O(LN?), making the design of reliable,
low-variance — i.e., effective — MC gradient estimators inherently challenging.
As already mentioned, computing gradients associated with each stochastic
edge introduces additional challenges w.r.t. time and space complexity; further
discussion and actionable directions are given in the next section.

7.4 Score-based graph learning from correlated
time series

This section presents our approach to probabilistic graph learning. After
introducing score-based gradient estimators (Section 7.4.1), we propose two
learnable graph distributions (Section 7.4.2) and comment on their practical
implementations (Section 7.4.3). The problem of controlling the variance
of the estimators is discussed together with novel and principled variance
reduction techniques tailored to graph-based architectures in Section 7.5. Finally,
Section 7.6 provides a convenient rewriting of the gradient for L-layered MP
architectures leading to a novel surrogate loss. Figure 7.1 provides a schematic
overview of the framework. In particular, the block on the left shows the
graph learning module, where A is sampled from p,; as the figure suggests,
depending on the parametrization of py,, some components of A can be sampled
independently. The bottom of the figure, instead, shows the predictive model
F(-;0) that, given the sampled graph and the input window, outputs the
predictions used to estimate £, (6,1)), whose gradient provides the learning
signals.

94 7.4 Score-based graph learning from correlated time series

VLt (9 1/1) ~/ (X\t:t-‘rHa Xt:t+H> Vay 10gp¢(At)

1
, ! loss terms
Y
log py (At)
p9(samplmg ?/? At A -t
Xttrmw, XetrH :
1
: A :
e~ N, et e :
- STGNN] —» .-" a0 © :
“4{STGNN '
1
STGNN ,
:
1
1
1
1
1
1

oo o CHETENN] — o,y O
time 4) 4 | . ’
e F(h0)
Xt—W:t A t:it+H

VoL (97 ¢) ~ Vol (X\t:H—H’ Xt:t+H)

Figure 7.1. Overview of the learning architecture. The graph learning module
samples a graph used to propagate information along the spatial dimension in F(-; 8);
predictions and samples are used to compute costs and log-likelihoods. Gradient
estimates are propagated back to the respective modules.

7.4.1 Estimating gradients for stochastic message-passing
networks

SFE' estimators are based on the identity

VB, [f(2)] = Ty / F (@) (2) di = / F(0)V gy () de (7.20)
_ / F(2)py(x) Vo log Py () d = B, [£(2) Vs log pos (1))
(7.21)

which holds — under mild assumptions? — for generic cost functions f and
distributions py. Rewriting Vy4E, [f(7)] in terms of the gradient of the score
function log py(-) allows for estimating the gradient through MC sampling
and enables backpropagation through the computation of the score function.
SF estimators are black-box optimization methods, i.e., they only require a
pointwise evaluation of the cost f(x) which does not necessarily need to be
differentiable w.r.t. parameters ®. In our setup, assuming disjoint 8 and 1,

2The identity is valid as long as p,, and f allow for the interchange of differentiation and
integration in Equation 7.20; see L'Ecuyer [1995]; Mohamed et al. [2020].

95 7.4 Score-based graph learning from correlated time series

Equation 7.21 becomes
VgL (0,9) = VyEy, [0:(A; 0)] = Ep, [0:(A;0)Vy logpy(A)], (7.22)

allowing for computing gradients w.r.t. the graph generative process without
requiring a full evaluation of all the stochastic nodes in the CG.

Sparse computation Path-wise gradient estimators tackle the problem of
estimating the gradient VyE, [0;(A;8)] by exploiting continuous relaxations
of the discrete py, thus estimating the gradient by differentiating through
all nodes of the stochastic CG. The cost of learning a graph with a path-
wise estimator is making any subsequent MP operation scale with O(LN?),
instead of the O(L|E|) complexity that would have been possible with a sparse
computational graph. The outcome is even more dramatic if we consider T&S
models where MP is used for propagating information at each time step, thus
making the computational and memory complexity O(LT N?), which would be
unsustainable for any practical application at scale. Conversely, the proposed
score-based methods allow for the implementation of MP operators with efficient
scatter-gather operations that exploit the sparsity of A, thus resulting in an
O(L|&|) complexity.

7.4.2 Graph distributions, graphs sampling, and graphs
likelihood

The distribution p,, should be chosen to 1) efficiently sample graphs and evaluate
their likelihood and 2) backpropagate the errors through the computation of
the score (Equation 7.22) to parameters 1. In the following, we consider graph
distributions s.t. each stochastic edge j — 7 is associated with a weight ®;;. The
considered distributional parameters ® € RV can be learned as a function of
the learnable parameters 1 as discussed in Section 7.1.

7.4.2.1 Binary edge sampler

A simple graph distribution is the one introduced in Equation 7.7 and considers a
Bernoulli random variable with parameter o(®;;) associated with each potential

edge ;7 — i. We refer to this graph learning module as binary edge sampler
(BES).

96 7.4 Score-based graph learning from correlated time series

Sampling For all pairs of sensors 7,j € S, the corresponding entries A;;
of A can be sampled independently from the associated distribution since
A;; ~ Bernoulli(c(®;;)). Here, the sampling from p, can be done efficiently
and is highly parallelizable.

Log-likelihood evaluation Computing the log-likelihood of a sample is
cheap and differentiable as it corresponds to evaluating the binary cross-entropy
between the sampled entries of A and the corresponding parameters o(®) of
the Bernoulli distribution, i.e,

log py(A) = Z Ajjlog(o(®y)) + (1 — Ayj) log(1 — o(Py)). (7.23)

Sparsity priors can then be added by regularizing @, e.g., by adding a Kullback-
Leibler regularization term to the loss [Shang and Chen, 2021; Kipf et al., 2018].
Graph generators like BES are a common choice in the literature [Franceschi
et al., 2019; Shang and Chen, 2021] as the independence assumption makes
the mathematics amenable and avoids the often combinatorial complexity of
dealing with more structured distributions. In the experimental sections, we
demonstrate that even simple parametrizations like BES can be effective with
the proposed score-based learning.

7.4.2.2 Subset neighborhood sampler

Encoding structural priors about the sparseness of the graphs directly into p,,
is often desirable and might allow — depending on the problem — to reduce
sample complexity. In this section, we use the score matrix ® € RV*V to
parametrize a stochastic top- K sampler that we dub subset neighborhood sampler
(SNS). For each n-th node, we sample a subset Sy € S = {1,...,N} of
K neighboring nodes by sampling without replacement from a categorical
distribution parametrized by normalized log-probabilities ®,, ., with ®,, . denoting
the n-th row of matrix . The probability of sampling neighborhood S is
given, for each n node, by

pu(Skln) = > pu(Sklm) = >]I 5 g;p eXp)((D 5o (124)

Skep(Sk) Skep(Sk) jeSk

where Sk denotes an ordered sample without replacement and p(Sk) is the
set of all the permutations of Si. Note that other parameterizations might be
considered (e.g., see [Ahmed et al., 2023]).

97 7.4 Score-based graph learning from correlated time series

Sampling Sampling can be done efficiently by exploiting the Gumbel-top-K
trick [Kool et al., 2019]. Consider the row of parameters ¢ = ®,,. and the
associated random vector [Gy,, ..., Gy, of independent Gumbel random vari-
ables G4, ~ Gumbel(¢;); given a realization thereof [gy, ..., gn], it is possible
to show that Sk = argtop-K{g; : i € S} follows the desired distribution [Kool
et al., 2019].

Log-likelihood evaluation Evaluating the score function is more challeng-
ing; in fact, Equation 7.24 shows that directly computing py(Sk|n) requires
marginalizing over all the possible K! orderings of Sk. While exploiting the
Gumbel-max trick can bring down computation to O(2%) [Huijben et al., 2022;
Kool et al., 2020], exact computation remains untractable for any practical
application. Luckily, p,(Sk|n) can be approximated efficiently using numerical
integration. Following the notation of Kool et al. {2019, 2020|, for a subset
B € S we define

LOGSigyEXP(qﬁi) = log (; exp qbZ) , (7.25)
we use the notation ¢p = LOGSUMEXP;cp ¢;, and indicate with pdf, and cdf,
the p.d.f. and c.d.f., respectively, of a Gumbel random variable Gumbel(u)
with location parameter u. Recall that cdf,(z) = exp(—exp(—z + u)) and the
following property of Gumbel random variables:

Gy, = max Gy, ~ Gumbel(¢p). (7.26)

i€B
With a derivation analogous to that of Kool et al. [2020], Equation 7.24 can be
conveniently rewritten by exploiting the property shown in Equation 7.26 as:

Py(Skln) =P (rgg{l Gy > max Gm) (7.27)
=P <G¢Z > G¢S\sk7Vi S SK) (728)
— [T G- et (o) bt () dg (7.20)

X eSSk

With an appropriate change (details in Appendix G), the integral can be
rewritten as

1
Py (SkIn) = exp (ds\s, +) / P (¢s\55c+e) -1 H (1-— ue"p(‘bﬁc)) du,
0 1€Sk

(7.30)

98 7.4 Score-based graph learning from correlated time series

where ¢ is a conditioning constant. We then approximate the integral in
Equation 7.30 by using the trapezoidal rule as

log py (Sk|n) ~ log(Au) + ¢s\s + ¢

—i—LOGSUME{(P ((exp ((bS\SK + c) — 1) log(t,,) + Z log (1 — uf:p((bﬂrc))) 7

m=1,....M—
1€SK
(7.31)

with M trapezoids and equally spaced intervals of length Awu; the integrands
are computed in log-space — with a computational complexity of O(M K') — for
numeric stability. The expression in Equation 7.31 provides, then, a differen-
tiable numeric approximation of the SNS log-likelihood which can be used for
backpropagation.

Adaptive number of neighbors As previously discussed, the proposed SNS
method allows for embedding structural priors on the sparsity of the latent graph
directly into the generative model. Fixing the number K of neighbors might,
however, introduce an irreducible approximation error when learning graphs
with nodes characterized by a variable number of neighbors. The problem can
be solved by adding dummy nodes. Given K, we add up to K —1 dummy nodes
to set S (i.e. the set of candidate neighbors) and expand matrix ¢ accordingly.
At this point, a neighborhood of exactly K nodes can be sampled and the
log-likelihood evaluated according to the procedure described above; however,
dummy nodes are discarded to obtain the N x N adjacency matrix A. By
doing so, hyperparameter K can be used to cap the maximum number of edges
and set a minimum sparsity threshold. The resulting computational complexity
in the subsequent MP layers is at most O(NK).

7.4.3 Learning the graph distribution p,;

For both BES and SNS, p, can be parametrized by following any of the
strategies discussed in Section 7.1 to parameterize the score matrix ®. Among
the main available design choices, it is possible, for example, to associate a
learnable parameter to each (edge) score ®;; by setting ® =). Similarly, one
could reduce the number of parameters to estimate by factorizing the score
matrix. Modeling dynamic graphs instead requires accounting for observations
X;_w. at each considered time step t, e.g., by using a sequence modeling block
to compute scores as a function of the input window. We refer to Section 7.1 for
an in-depth discussion of the available alternatives and existing architectures.

99 7.5 Reducing the variance of the estimator

7.5 Reducing the variance of the estimator

MC estimation is the most commonly used technique to approximate the gradient
in Equation 7.22. Although the resulting estimators are unbiased, the quality
of the estimate can be dramatically impacted by its variance: as such, variance
reduction is a critical step in the use of score-based estimators. As for any MC
estimator, a direct method to reduce the variance consists in increasing the
number M of independent samples used to compute the estimator, which results
in reducing the variance by a factor 1/M w.r.t. the one-sample estimator. In
our setting, sampling M adjacency matrices results in M evaluations of the cost
and the associated score and, in turn, to an often considerable computational
overhead. In this section, we provide more sample-efficient alternatives, based
on the control variates method. Our approach grants a significant variance
reduction while requiring only one extra evaluation of the cost function. That
being said, our approach to variance reduction is orthogonal to increasing
the sample size, which remains a viable to further improve the quality of the
gradient estimator.

7.5.1 Control variates and baselines

The control variates method provides a variance reduction method for MC
estimator of I, [g(x)]. It consists in introducing an auxiliary quantity h(z) for
which we know how to efficiently compute the expectation under the sampling
distribution p,, [Mohamed et al., 2020]. Then, a function § = g — S(h — E[h]) is
defined, for some constant 3, such that g has the same expected value of g, i.e.,
E[g(z)] = Elg(x)], but lower variance (Var[g(z)] < Var[g(x)]). Quantity h is
called control variate, while (3 is often referred to as baseline. In score-based meth-
ods, a computationally cheap choice is to use the score function itself as control
variate, i.e., referring to our case where g(A) = 6,(A;0)Vylogpy(A) (Equa-
tion 7.22), we set h(A) = Vy log py(A), for which E, [h(A)] = 0, and obtain

VLo (6,9) = By, [(5:(4:0) — B) Ty log py(A)]. (7.32)
This narrows the problem to finding appropriate values for baseline . Since for

any fi, fa, Var[fi + fo] = Var[fi] + Var[fa] + 2Cov|[f1, f2], the optimal baseline
B« in Equation 7.32 is given by

g, = CoV0/(A;0)Vy logpy(A), Vy log py(A))
* Varp,, [V log py (A)]
_ By [0(A;0)(Vy log py(A))°]
Ep,[(Vylogpy(A))?]

(7.33)

100 7.5 Reducing the variance of the estimator

Unfortunately, finding the optimal , can be as hard as estimating the desired
gradient in Equation 7.22; moreover, note also that 5, = f.(&X}), as ¢; depends
on the observations X;. Therefore, we opt for the approximation

Ep, [0:(A; 0)(Vy log py(A))’] ~ By, [0:(A; 0)|Ep, [(Vy log py (A))°], (7.34)

and obtain f, ~ Ep, [0;(A;0)]. Note that a similar choice of baseline is very
popular, for instance, in reinforcement learning applications (e.g., see advantage
actor-critic estimators, Sutton et al. 1999; Mnih et al. 2016). However, since
approximating [, [0;(A; 0)] would require the introduction of an additional
estimator, we rely on a different approximation by moving the expectation
inside the cost function and obtaining 3, ~ d;(p; 8), where p = E, [A].

We recall that, in general, p is dense and its components are real numbers,
therefore computing d0,(p; @) would require evaluating the output of the model
w.r.t. a dense adjacency matrix, potentially outside the well-behaved region of
the input space, and to compute messages w.r.t. each node pair, thus negating
any computational complexity benefit. Accordingly, we substitute g with the
Fréchet mean adjacency matrix A*, relying on the generalized notion of mean
for binary adjacency matrices introduced in Section 7.2.2. We then choose as 3
such that

3= 6,(A"0). (7.35)
The computational cost of evaluating ,@ corresponds then to that of a single eval-
uation of the cost function §, w.r.t. the binary and eventually sparse adjacency
matrix A*.

Finally, we point out that, even though B may differ from f,, the variance
is reduced as long as 0 < B < 20,. We indicate the modified cost, i.e., the
cost minus the baseline as 6;(A; 0) = 6,(A;) — 6,(A*; 0); the modified cost is
computed after each forward pass and used to update the parameters of p,. In
the following, we derive analytical solutions for finding A* for BES and SNS,
respectively.

7.5.1.1 Baseline for BES

We start by recalling the notation from previous sections. Denote expectation
Ep, [A] with respect to BES as p € [0, 1]V ¢ R¥*V and with A* the binary
Fréchet mean adjacency matrix with respect to the support A = {0, 1}V*V of
the distribution py, associated with BES. The main result of the section is the
following proposition which allows us to provide a baseline as

Bims = 6 (|0(9)];6), (7.36)

101 7.5 Reducing the variance of the estimator

where |®] indicates the element-wise rounding of the components of the real
matrix ® to the closest integer (either 0 or 1).

Proposition 1. Consider BES with associated distribution p,, and support A.
Then,

e the expected matrix Ep [A] is p = 0(®P), with o applied element-wise;

e the Fréchet mean adjacency matrix A* = |p] = I(P > 0).

Proof. As each component of A ~ p, is independent from the others, p;;
can be considered element-wise as Ep [A;;] = o(®;;), for all 4,5 = 1,..., N.
Similarly, each component of A* can be computed independently as well, by
relying on Lemma 1.

Lemma 1. The minimum of the Fréchet function Fy can be expressed as

N
] P 3 ¢ — .. 2
min S (A) = min > 1 (pij — Aij)”. (7.37)
INES
To conclude the proof of Preposition 1, we observe that the minimum of
Equation 7.37 is attained at A* = |u], that is Aj; = 1 for all p;; > 1/2 (or >

0), and 0 elsewhere. The proof of the Lemma 1 is deferred to Appendix G. [

7.5.1.2 Baseline for SNS

Similarly to what has been done for BES in Proposition 1, we provide analogous
results for SNS, with the added technical complexity that, in this case, edges
j — i and j° — i are not independent. Nevertheless, the result remains intuitive:

Bsns = 0; (A" 0), with AY. = I (®;; € top-K{®;.}), Vi,jeS. (7.38)

The proof that A* is indeed the Fréchet mean for SNS follows Preposition 2.

Recall that, for SNS, the support of py, is that of directed K-NN graphs in

Equation 7.40, where the neighborhood of each node is sampled independently.

Equation 7.38 is derived by considering a neighborhood of fixed size K’; however,

the analysis remains valid for the adaptive case discussed in Section 7.4.2.2.
In the SNS case, each entry p,; of p is

pi = ppli € Sxln) = S py(Sicln), (7.39)

Shie Sy

102 7.5 Reducing the variance of the estimator

where the sum is taken over all subsets S% of S of K elements containing node 7.
Even if marginalizing over all possible sampled subsets of S has combinatorial
complexity, we show that A* can be derived without directly computing p as
stated in Proposition 2.

Proposition 2. Consider an SNS distribution with support

_ NxN . N _ :
A= {A e{0. 1YY Ay =K. Vz}. (7.40)
Then, the Frechét mean A* is given by
Al =1 (9 € top-K{®;.}), Vi,j€S. (7.41)
Proof. Computing A* corresponds to solving the optimization problem
. _ . , /
min§pr (A) = minEy.p, [H(A, A7) (7.42)
Start by rewriting the Fréchet function as
Su(A) =Eanp, [H(A, A')] (7.43)
N
=Earnp, | > Ani—24,,A,, + A, (7.44)
n,2=1
N N
= A (=2,)+ > (7.45)
nyi=1 " aj=1
Wn, i w_/

c

where p,,; = py (1 € Sgn) = py (A,; =1) and ¢ is a constant. The proof
follows from Lemma 2.

Lemma 2. Let py be an SNS distribution with associated log-probabilities ®.
Then Vn,i,j € S

The proof of Lemma 2 is provided in Appendix G. Following Equation 7.45, the
optimization problem in Equation 7.42 becomes the linear program

N N
minimizeg E w;j Aij

i=1 j=1

N
j=1

AijE{O,l} Vi=1,...,N,

(7.47)

103 7.6 Layer-wise sampling and surrogate objective

where w;; = 1 — 2py, (A;; = 1). Since Lemma 2 grants that, for each i, the
K-smallest w;; weights correspond row-wise to the top-K scores ®;;, the solution
A" to the linear program is given by Aj; = I (®;; € top-K{®;.}) and, hence,

the thesis. O

7.6 Layer-wise sampling and surrogate objective

As a final step, we can leverage on the structure of MP neural networks to
rewrite the gradient VL, (6,1). This formulation allows for obtaining a
different estimator for the case where we sample a different AY at each of the
L MP layers of F(-;0).

Proposition 3. Consider family of models F(-, A*X; 0) with exactly L message-
passing layers propagating messages w.r.t. different adjacency matrices AW,
[l =1,...,L, sampled from p, (either BES or SNS). Assume that the cost
function ¢; can be written as the summation over node-level costs §i. Then

v"/"ct (0’ ’l»b) =
1

~

N
Ep, | 0,(A%0)Vylogpy(AD) + 3 6i(A%0)Vy logpy(AL)] |

=1 =1

(7.48)

where Al(-f) denotes the i-th row of adjacency matrix A", i.e., the row corre-
sponding to the neighborhood of the i-th node.

Proposition 3 holds for all parametrizations of p,;, as long as the neighborhood
of each node (i.e., the rows of A) are sampled independently. Furthermore,
note that almost all of the cost functions typically used for node-level tasks
satisfy the assumption, e.g.,

l/>1-€:15+I{ = f@ (thW:t; A:L))
N

5(A%0) =Y)
=1

p

N
yz:t-‘,—H - gz:t—l—H”p Z 52(AL’ 0)
=1

The following provides proof of Proposition 3 and presents a surrogate objective
function inspired by Equation 7.48.

Proof. A proof can be derived by noticing the independence of §:(AX;) and
pqp(Ag-’L:)) for i # j, and by exploiting the fact that with both BES and SNS

104 7.6 Layer-wise sampling and surrogate objective

rows of each AY are sampled independently. For the sake of readability, we
omit the dependency of ¢; and §; from A** and 6. The proof follows:

VLl (0,9) = Ey, [0:Vylogpy(A™)] (7.49)
L—1
=Ep, | Y6 Vylogpy(AY)| +Ep, [6:Vylog py(A")] .
=1 hd

(*)
(7.50)

By considering the second term:

(%) = Ep, [6:Vy log py(AF)] (7.51)

N N
= Ep, Z 5 Z Vs log py(ALY)

Do 25 Vi 10gp¢(

(7.52)

~E)| +Ep,

2(5 Zv¢logp¢)]

i=1 e

(%)

J/

(7.53)

The two factors in (xx) are independent since 6! depends only on A”*~! and
Al hence

N
() = 3 By, [6] DBy, | Vulogpy(A)] 0. (7.54)
i=1 G ~ <

=0

Putting everything together, we get Equation 7.48 and the proof is completed.
O

7.6.1 Surrogate objective

Intuitively, the second term in Equation 7.48 can be interpreted as directly
rewarding connections that lead to accurate final predictions w.r.t. the local cost
d%. Besides providing a more general MC estimator, Preposition 3 motivates us
in considering a similar surrogate approximate loss Et (0,)) for the case where
we use a single A for all layers, i.e., we consider

~ N .
VL (0,9) = By, | \(A4;0)Vys logpy(A) + 3 51(A:0)Vylogpy(As)|.
(7.55)

105 7.7 Empirical results

as gradient to learn p,. Equation 7.55 is developed from Equation 7.48 by
considering a single sample A ~ p,, and introducing the hyperparameter \.
Note that, in this case, Et (0,1)) is an approximation of the true objective with
a reweighting of the contribution of each 6°(A;@). Following this consideration,
A can be interpreted as a trade-off between local and global cost. In practice, we
set A = 1/N, so that the two terms are roughly on the same scale. Empirically,
we observed that using the modified objective consistently leads to faster
convergence; see Section 7.7.

7.7 Empirical results

To validate the effectiveness of the proposed framework, we carried out ex-
periments in several settings on both synthetic and real-world datasets. In
particular, a set of experiments focuses on the task of graph identification where
the objective is that of retrieving graphs that better explain a set of observations
given a (fixed) predictive model. The second collection of experiments shows
instead how the proposed approach can be used as a graph-learning module
in an end-to-end forecasting architecture. We refer to Appendix G and to the
reference paper for additional details on the experimental setup [Cini et al.,
2023d].

7.7.1 Datasets

As synthetic benchmark we use the original version of the GPVAR dataset
introduce by Zambon and Alippi [2022| which consists of signals generated
by recursively applying a polynomial Graph VAR filter [Isufi et al., 2019] and
adding Gaussian noise at each time step. In particular, analogously to Zambon
and Alippi [2022], we consider the data generating process

L Q
X, = tanh (Z > ¢l7quXt_q> + (7.56)

=0 g=1

where A = I + A (with I being the identity matrix), ¢ € RETDXQ denotes
the model parameter and 7, ~ N(0,I) is a Gaussian noise vector. We use
the community graph described in Chapter 4, but consider the configuration
introduced in [Zambon and Alippi, 2022|, which consists of 30 nodes. Model
parameters, with L = () = 2, are set as in previous works and used to generate
a trajectory of T = 30000 steps. We use 70/10/20% data split for training,
validation, and testing, respectively.

106 7.7 Empirical results

For what concerns benchmarks utilizing real-world data, we use the AQI
dataset and traffic datasets (METR-LA and PEMS-BAY) as described in
Chapter 4.

7.7.2 Controlled environment experiments

To gather insights on the impact of each aspect of the methods introduced
so far, we start by using the controlled environment provided by the GPVAR
dataset.

7.7.2.1 Graph identification and time series forecasting

In the first setup, we consider a GPVAR filter as the predictor and assume
known the true model parameters, i.e., the coefficients of the filter, to decouple
the assessment of the graph-learning module from that of the forecasting module.
Then, in a second scenario, we learn the graph while, at the same time, fitting
the filter’s parameters. Figure 7.2 shows the validation MAE after each training
epoch by using BES and SNS samplers, with and without baseline B for variance
reduction, and when SNS is run with dummy nodes for adaptive node degrees.
The number of maximum neighbors is set to K = 5, which is the maximum
degree of the ground truth graph. In particular, Figure 7.2a and Figure 7.2b
show results in the graph identification task for the vanilla gradient estimator
derived from Equation 7.21 and for the surrogate objective from Equation 7.55,
respectively. To match the optimal prediction, models have to perfectly retrieve
the underlying graph. During the evaluation, we used A" as input to the
predictor instead of sampling p,. Results allow us to make the following
comments.

Impact of the baseline The first striking outcome is the effect of baseline
[in both the considered configurations which dramatically accelerates the
learning process.

Graph distribution The second notable result is that, although both SNS
and BES are able to retrieve the underlying graph, the sparsity prior in SNS
yields faster convergence w.r.t. the number of samples seen during training,
as the validation curves are steeper for SNS; note that the approximation
error induced by having a fixed number of neighbors is effectively removed
with the dummy nodes.

Surrogate objective Figure 7.2b shows that the surrogate objective con-
tributes to accelerating learning even further for all considered methods.

107 7.7 Empirical results

Graph identification - Standard objective Graph identification - Surrogate objective

o
oo

e
<

Validation MAE
(=]
(=)}

0.5
0.4 :
0.3+~ T i]]] 3 I I I I ““‘“""_"‘
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
(a) (b)
Joint graph and model learning
0.81 — BES
07{ ! SNS
| —— SNS with dummies
0.6 . .
—— With baseline

L e e Without baseline
0.41 ——= Optimal
0.3

Epoch
()

Figure 7.2. Experiments on GPVAR. All the curves show the validation MAE after
each training epoch.

Joint training Finally, Figure 7.2c reports the results for the joint training of
the predictor and graph module with the surrogate objective. The curves, in
this case, were obtained by initializing the parameters of the filter randomly
and specifying an order of the filter higher than the real one; nonetheless, the
learning procedure was able to quickly converge to the optimum when using
as baseline the cost evaluated w.r.t. A*.

7.7.2.2 Sensitivity analysis

To further assess the impact of the surrogate objective and that of the structural
priors embedded into the SNS parametrization, we run a sensitivity analysis on
both these aspects.

Regarding the surrogate objective, we run a sensitivity analysis on the
hyperparameter A, which was kept fixed to A = 1/N in the experiments in
Figure 7.2. In particular, we repeated the experiment on graph identification

108 7.7 Empirical results

Graph id. - Surrogate objective (no baseline)

A=1.0

08 1=0.8

Ezé 0.7 A=06

%06 —— A=04

§ 05 — 1=0.2
e —— A=1/N
0.4] =1/30

03 e Optimal

) 20 40 60 80 100

Epoch

Figure 7.3. Sensitivity analysis on A for the surrogate objective.

Graph id. - Surrogate objective (with baseline)

0.8
- K =30
0.7
< _
S K =20
§o06 — K=10
=
Z0s — K=5
- Optimal
0.4 \\ P
0.3+— y . : : :
0 20 40 60 80 100
Epoch

Figure 7.4. Sensitivity analysis on K for SNS.

setting by considering the BES parametrization and values for A in the range
[1/N =1/30,1]. We did not use the baseline to accentuate the sensitivity to
A. Results, shown in Figure 7.3, demonstrate the effectiveness of the surrogate
loss in accelerating learning by introducing and reweighting the local cost term
and how decreasing the weight of the global cost leads to faster convergence.

Finally, we assess the impact of the value of the hyperparameter K on
the learning speed for the SNS sampler. In this case, we consider the graph
identification experiment with the baseline for variance reduction. We run
experiments with K € (5, 10,20,30) and a number of dummy nodes equal to
K — 1. Results in Figure 7.4 show that while the use of dummy nodes reduces
the impact of a wrong assessment of K, overestimating the maximum number of
neighbors can nonetheless lead to slower convergence. In particular, given these

109 7.7 Empirical results

0.60 GPVAR(, 4) 060 GPVAR(4, 6)
—— Score-based
0.551 0.551 —— Path-wise
53] —— Straight-through
< 0.50 0.50 1
=
£045 0.451
=
2
= 0.40 0.40+
>
0.351 0.351
0.30+ y y 0.30— T " - .
0 20 40 0 100 200 300 400
Epoch Epoch

() (b)

Figure 7.5. Comparison of different estimators on the joint training settings in GPVAR.

settings and hyperparameters, SNS fails to converge to the optimal solution
for K = 30, i.e., a number of neighbors equal to the number of nodes. As a
general recommendation, we argue that using SNS can be beneficial as long as
K < N/2, while for larger values of K a BES parametrization is preferable due
to the reduced overhead in sampling and likelihood evaluation.

7.7.2.3 Comparison with path-wise and straight-through estimators

In this section, we assess the effectiveness of the proposed score-function es-
timator (with baseline and surrogate objective) against both the path-wise
estimator, based on the Concrete continuous relaxation of Bernoulli random
variables [Maddison et al., 2017], and the straight-through estimator [Bengio
et al., 2013]. We consider the controlled joint graph and model learning scenario
from subsubsection 7.7.2.1. In particular, for all estimators, we consider the
BES parametrization for the graph distribution and the model family of Graph
VAR filters of spatial order 3 and temporal order 4 — as in the joint training ex-
periment of subsubsection 7.7.2.1 — and a more difficult scenario corresponding
to filters up to orders 4 and 6, respectively. The results of the experiment are
shown in Figure 7.5. In the simpler setting (Figure 7.5a), both the path-wise
and straight-through estimators appear to converge faster than the score-based
approach, yet they reach sub-optimal results — a side-effect that we attribute
to the bias of the path-wise and straight-through estimators. In the harder
setting (Figure 7.5b), instead, our method achieves better performance both in
terms of forecasting accuracy and sample complexity. This behavior might be
associated with the complex dynamics of learning the relational structure given
a larger family of predictive models.

110 7.7 Empirical results

7.7.3 Real-world datasets

The following discusses the application of the proposed method w.r.t. data
coming from real-world scenarios.

7.7.3.1 Graph identification in AQI

For graph identification, we set up

the following scenario. From the AQI Table 7.1. AQI experiment.
dataset, we extract 2 subsets of sen-
sors that correspond to monitoring sta- Tested on
tions in the cities of Beijing and Tian- Trained on | Beijing Tianjin
jin, respectively. We build a graph for Beijing 9.4310.03 10.62x0.05
both subsets of data by constructing Tianjin 9.554006 10.56+0.03
a K-NN graph of the stations based -

v stabh o Baseline | 10.21z001 11.2510.01
on their distance; we refer to these as

ground-truth graphs. Then, we train

a different predictor for each of the two cities, based on the ground-truth graph.
In particular, we use a TTS model with a simple architecture consisting of
a GRU [Chung et al., 2014] encoder followed by 2 isotropic MP layers. As a
reference value (sanity check), we also report the performance achieved by a
GRU trained on all sensors, without using any spatial information. Performance
is measured in terms of 1-step-ahead MAE. Results for the two models, trained
with early stopping on the validation set and tested on the hold-out test set
for the same city (i.e., in a transductive learning setting) are shown in the
main diagonal of Table 7.1. In the second stage of the experiment, we consider
an inductive setting: we train the model above on one of the two cities as a
source, freeze its parameters, discard the ground-truth graph w.r.t. the left-out
city, and train our graph learning module (with the SNS parametrization) to
maximize the forecasting accuracy. The idea is to show that our module is able
to recover a topology that gives performance close to what would be achievable
with the ground-truth graph. Results, reported in the off-diagonal elements of
Table 7.1, show that our approach is able to almost match the performance that
would have been possible to achieve by fitting the model directly on the target
dataset with the ground-truth adjacency matrix; moreover, the performance is
significantly better than that of the reference GRU.

111 7.7 Empirical results

Table 7.2. Results on the traffic datasets.

MODEL METR-LA PEMS-BAY

MAE @15 MAE @30 MAE @ 60 | MAE @ 15 MAE @ 30 MAE @ 60
Full attention 2.727+.005 3.049+ 009 3.411+ 007 1.335x.003 1.655+.007 1.929+ 007
GTS 2.750+.005 3.1744 013 3.653+.01s 1.360+.011 1.7154 032 2.054+ 061
MTGNN 2.690+.012 3.057+016 3.520+.010 | 1.3281+.005 1.655+.010 1.951+.012
Our (SNS) 2.725+.005 3.051+.009 3.412+.013 1.317+.002 1.620+.003 1.873+.005
Adjacency
—Truth 2.720+x.00e 3.106+.00s 3.556+.011 | 1.335+.000 1.676+.00a 1.993+.008
—Random 2.801+.006 3.160+.00s 3.517+.009 1.327+.001 1.636+.002 1.897+.003
—Identity 2.842+002 3.264x002 3.740+004 | 1.341+001 1.6841000 2.013+.003

7.7.3.2 Joint training and forecasting in traffic datasets

Finally, we test our approach on 2 widely used traffic forecasting benchmarks.
Here we took the full-graph attention architecture proposed in [Satorras et al.,
2022|, removed the attention gating mechanism, and used the graph learned
by our module to sparsify the learned attention coefficients; in particular, we
considered the SNS sampler with K = 30, 10 dummy nodes and surrogate
objective (A = 1/N). We used the same hyperparameters of [Satorras et al.,
2022|, except for the learning rate schedule and batch size (see supplemental
material). As a reference, we also tested results using the ground-truth graph,
a graph with only self-loops (i.e., with A set to the identity matrix), as well
as a random graph sampled from the Erdés-Rényi model with p = 0.1. For
MTGNN [Wu et al., 2020] and GTS we report results obtained by running the
authors’ code. More details are provided in the reference paper [Cini et al.,
2023d]. Note that GTS was considered the state of the art for methods based on
path-wise estimators [Ziigner et al., 2021]. Results in Table 7.2 show the MAE
for 15, 30 and 60 minutes time horizons achieved over multiple independent
runs. Our approach is always competitive w.r.t. the state-of-the-art alternatives,
and significantly better than all the baselines with reference adjacency matrices.
Note that, using a random adjacency matrix — which essentially corresponds to
randomly sparsifying the attention coefficients — is often competitive with more
complex approaches which suggests that, in some datasets, having access to
the ground-truth graph is not decisive for achieving high performance. That
being said, our graph learning methods consistently improve performance w.r.t.
the naive baselines.

112 7.7 Empirical results

T e S SO R 5]
OOM

5 201 4]
€ s =
g 37
g 104 &
S 10 321
S

51 n

0 S o o 0o @ o (0 o e 0 o O) [] [] [] [] [] [] [] [] [] [] L]

0 200 400 600 200 400 600
Number of nodes Number of nodes
® Score-based Straight-through

Figure 7.6. Computational scalability of the proposed estimator against the straight-
through method.

7.7.4 Scalability

To assess the scalability of the proposed method, we consider a T&S model
consisting of a GRU with gates implemented by an anisotropic MP operator.
In particular, we consider a simple MP scheme s.t.

-y MLP< (1) g ”) (7.57)

JEN(3)

The resulting model has a space and time complexity that scales as O(LT'|E]).
By considering the same controlled environment of the experiments in Sec-
tion 7.7.2 and varying the number of nodes in the graph underlying the gen-
erated data, we empirically assessed the time and memory cost of learning a
graph distribution with our SNS approach against a straight-through estimator.
Note that, while the straight-through estimator allows for a sparse forward
pass at inference, the processing is nonetheless dense at training time — thus
requiring O(LT N?) time and space, instead of O(LTE|).

The resulting models are trained on mini-batches of 4 samples with a window
size of 8 steps for 50 epochs, each consisting of 5 mini-batches. The empirical
results in Section 7.7.4 show measured GPU usage and latency for the above
settings. The computational advantages of the sparse MP operations enabled
by our method are evident.

113 7.8 Conclusions and future directions

7.8 Conclusions and future directions

We proposed a methodological framework for learning graph distributions from
correlated time series. Our novel probabilistic framework relies upon score-
function gradient estimators that allow us for keeping the computation sparse
throughout both the training and inference phases. We then developed variance
reduction techniques for our method to obtain accurate estimates of the gradient
at training time. The proposed graph learning modules are applied to the time
series forecasting task where they can be used for both graph identification and as
components of an end-to-end architecture. Empirical results support our claims,
showing the effectiveness of the framework. Notably, we achieve forecasting
performance on par with state-of-the-art alternatives, while maintaining the
benefits of graph-based processing. In some sense, graph learning can be seen as
a regularization of attention-based architectures [Vaswani et al., 2017|, where,
rather than relying on attention scores between each pair of nodes, the learned
graph is used to route information only between certain nodes, thus providing
localized node representations typical of graph-based processing. As such, we
argue that the associated methodologies constitute a relevant aspect of modern
approaches to correlated time series forecasting.

Future directions Possible directions for future research include the assess-
ment of the proposed method w.r.t. the inference of dynamic adjacency matrices,
distribution agnostic variance reduction methods, and, in particular, the design
of advanced forecasting architectures to achieve accurate predictions at scale.
Furthermore, it would interesting to assess the combination of the proposed
estimators with orthogonal variance reduction techniques (e.g., Kool et al. 2020)
and data-driven baselines. The study of methods to calibrate the uncertainty
over the existence of each edge is also an interesting direction which has already
seen follow-up work [Manenti et al., 2024]. Beyond learning binary adjacency
matrices, learning edge attributes [Kipf and Welling, 2017| and higher-order
relationships (e.g., as in [Battiloro et al., 2024]) are relevant directions to ex-
plore further. Finally, future works might investigate the application of the
recently proposed implicit maximum likelihood estimators [Niepert et al., 2021;
Minervini et al.,; 2023| to the settings explored in this chapter.

114 7.8 Conclusions and future directions

Chapter 8

Computational scalability

This chapter focuses on the computational scalability of the introduced frame-
work (Challenge 4) and introduces a scalable graph-based forecasting ar-
chitecture. As highlighted in Chapter 3, training STGNNs can incur high
computational costs: designing the forecasting architecture having these po-
tential constraints in mind is crucial. Section 8.1 provides further details on
the computation scalability of standard STGNNs architectures and discusses
methods to deal with the issue. Preliminary concepts toward introducing the
proposed scalable forecasting architecture are given in Section 8.2. Section 8.3
presents, then, the Scalable Graph Predictor (SGP) architecture, our proposed
approach. Section 8.4 provides additional discussion on the related work. Em-
pirical results (Section 8.5) show that the proposed method can match the
state of the art in forecasting accuracy while being drastically more scalable
w.r.t. both sequence length and graph size. Finally, Section 8.6 discusses future
directions.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi.
Scalable Spatiotemporal Graph Neural Networks. Proceedings of the 37th
AAAI Conference on Artificial Intelligence, 2023a

115

116 8.1 Dealing with large time series collection

8.1 Dealing with large time series collection

Scalability concerns can emerge from both the number of target time series as
well as their length. Notably, dealing with thousands of time series acquired at
high sampling rates over long periods of time is rather common, e.g., in trans-
portation systems and smart power grids [Cini et al., 2023a; Liu et al., 2023c|.
This results in a large amount of data that must be processed at once. While
the research to improve the scalability of models for static graph signals has
been very prolific [Hamilton et al., 2017; Chiang et al., 2019; Zeng et al., 2020;
Frasca et al., 2020], little attention has been paid to the additional challenges en-
countered when dealing with discrete-time dynamical graphs which corresponds
to the setting we are dealing with. When designing and /or implementing an
STGNN, the scalability issue, then, must be taken into account.

8.1.1 Computational scalability in STGNNs

As mentioned in Section 3.3, a generic T&S model performs L stacked MP
operations for each time step resulting in a time and space complexity scaling
with O(W(N+L|5max|)), or (’)(WL|5maX\) assuming N < |Epax|. STT models
are characterized by an analogous computation complexity, as the decoupled
processing generally does not bring any advantage in this direction. Conversely,
TTS models, by encoding the time series ahead of any MP operation, scale with
O(WN + LI&), which, again assuming N < |&], is a notable improvement.
However, even models following this paradigm can struggle whenever either
N, W, or |E| are large, and appropriate computational resources can quickly
become unaffordable. This issue is particularly relevant at training time when
processing batches of such high-dimensional data concurrently is needed to fit
STGNN’ parameters on the available data.

Graph subsampling and precomputed representations An often viable
solution is to subsample the data fed to the model. In particular, the computa-
tional burden can be reduced at training time by extracting subgraphs from
the full-time series collection [Hamilton et al., 2017; Chiang et al., 2019; Zeng
et al., 2020] by, e.g., considering the K-th order neighborhood of a subset of
nodes. Such approaches have been exploited, mostly adapted from methods
developed in the context of static graph processing, and have indeed been
applied to scale graph-based time series forecasting to large networks [Wu
et al., 2020; Gandhi et al., 2021; Rong et al., 2020]. Subsampling methods,
then, allow for capping the number of nodes/edges to be processed for each

117 8.1 Dealing with large time series collection

Temporal embedding: 7 x Nxd, — Nxd, Spatial embedding: N xd, — Kd,

o1 0530 (B - P It 53
8]
=l e 9720 (BN |40 .

xt—W:t

%] O O =i

2 11y - 017 O 0 Tuwn

=] v o e

s | OOO0179 - - 017 3 000 Zin

. , &

= § Lo
0 1 K

Figure 8.1. Overview of SGP forecasting framework. Light-grey boxes denote
training-free components. At first, an echo state network — with shared parameters
across nodes — encodes multi-scale temporal dynamics. Then, K graph shift operators
are used to propagate spatial information. The resulting K + 1 representations are
concatenated and fed to an MLP to predict the next node observations.

sample based on the available computational resources. The drawback of these
approaches is that such a subsampling might break long-range spatiotemporal
dependencies (n.b., data are not i.i.d.) and may result in a noisy and biased
learning signal. Similar arguments can be made w.r.t. using small batch sizes
and short input windows. To go beyond the limitations of subsampling methods,
in the following, we introduce a novel approach to building scalable forecasting
architectures based on precomputing spatiotemporal representations of the input
ahead of training [Cini et al., 2023a|. Our approach relies on randomized deep
echo state networks |Gallicchio et al., 2017; Bianchi et al., 2020¢| and powers
graph shift operators to extract spatiotemporal representations unsupervised.
Figure 8.1 provides an overview of the approach. Since the encoding scheme
requires neither training nor supervision, the representation of each node and
time step can be computed as a preprocessing step. Representations can then
be sampled uniformly across time and space (as if they were i.i.d.) to efficiently
train a decoder for mapping them to predictions; this makes the computational
cost of a training step independent of both sequence length and graph size.

118 8.2 Preliminaries

8.2 Preliminaries

We consider the reference settings introduced in Section 3.1 and relational
representations encoded by a static weighted adjacency matrix A € RV*V,
Extensions that consider (dynamic) edge attributes are nonetheless possible (see
Section 8.6). The following, then, provides some preliminary concepts on echo
state network (ESN) architectures, a class of randomized RNNs already briefly
introduced in Chapter 2 (see Section 2.5.1).

8.2.1 Echo state networks

Echo state networks (ESNs) [Jaeger, 2001; Lukosevicius and Jaeger, 2009] are
a class of randomized architectures |Gallicchio and Scardapane, 2020] that
consist of recurrent neural networks with random weights [Lukosevicius and
Jaeger, 2009] that encode the history of input signals into a high-dimensional
state representation to be used as input to a (trainable) readout layer. The
main idea is to feed an input signal into a high-dimensional, randomized, and
non-linear reservoir, whose internal state can be used as an embedding of the
input dynamics. An echo state network is driven by the following state update
equation:

h, =0 (W,xz, + W,h,_1 +b), (8.1)

where x; indicates a generic input to the system, W, € R%*% and W), € R
are the random matrices defining the connectivity pattern in the reservoir,
b € R% is a randomly initialized bias, h; indicates the reservoir state, and o is a
nonlinear activation function (usually tanh). If the random matrices are defined
properly, the reservoir can extract a rich pool of dynamics characterizing the
system underlying the input time series @; and, thus, the reservoir states become
informative embeddings of @, 7, [Lukosevicius and Jaeger, 2009]. Thanks to
the non-linearity of the reservoir, embeddings are commonly processed with
a linear readout that is optimized with a least squares procedure to perform
classification, clustering, or time series forecasting [Bianchi et al., 2020¢].

8.3 Scalable spatiotemporal GNNs

In this section, we introduce the Scalable Graph Predictor (SGP) [Cini et al.,
2023al, a scalable graph-based forecasting architecture based on the idea of
precomputing representations ahead of training |Frasca et al., 2020]. Figure 8.1
provides an overview of the proposed approach. SGP is based on a hybrid

119 8.3 Scalable spatiotemporal GNNs

A A A
6202
o | 2.0) | CEEFEE)- - 66 &
g
070 540 %
REOME O s nnans Mlaas
g p: § —k
®° W ppu—
: e —|
"""" - HY Echo State Network S:(O) S,

Figure 8.2. Overview of the SGP encoder. Input time series are fed into a randomized
network with recurrent connections and embedded into a hierarchical vector represen-
tation. A graph shift operator is used to propagate and aggregate spatial information
of different order which is then concatenated to obtain a final embedding.

encoder-decoder architecture. The encoder first constructs representations of
the time series observed at each node by using a reservoir (a deep ESN Gallicchio
et al. [2017]) that accounts for dynamics at different time scales. Representations
are further processed to account for spatial dynamics described by the graph
structure. In particular, we use incremental powers of the graph adjacency
matrix to propagate and aggregate information along the spatial dimension.
Each power of the propagation matrix accounts for different scales of spatial
dynamics. The final embedding is then built by concatenating representations
obtained w.r.t. each propagation step, thus resulting in a rich encoding of both
spatial and temporal features. The computation of these representations can
be done ahead of training (thus avoiding GPU memory bottlenecks) and is
performed only once. Indeed, the encoding scheme does not need any training.
Embeddings, once computed, can be uniformly sampled over time and space
while training a nonlinear readout to obtain forecasts. The readout (i.e., a
decoder) can be simply implemented as an MLP mapping encodings to multi-
step predictions. To further enhance scalability, however, the embedding
structure can be exploited to reduce the number of parameters and learn filters
localized in time and space. As discussed in Section 8.3.2, this is done by
learning separate weight matrices for each spatiotemporal scale. The following
subsections describe each component of the architecture in detail.

8.3.1 Scalable spatiotemporal representation

We consider as temporal encoders deep ESNs [Gallicchio et al., 2017 with leaky
integrator neurons [Jaeger et al., 2007]. In particular, we consider networks
where the signal associated with each node is encoded by a stack of L randomized

120 8.3 Scalable spatiotemporal GNNs

recurrent layers s.t.
i,(0 Q[0yi
ht() = [thut} >
Ry = tanh (WOR Y+ WO 4 00)), (8:2)
he' = (1 —wh +uh" =1L

where 7; € (0, 1] is a discount factor associated with I-th layer, W e Rdu Xdpi-1
W, € R >4 b € R% are random weight matrices, hi’(l) indicates the hidden
state of the system w.r.t. the i-th node at the I-th layer, and || indicates node-
wise concatenation. Note that, to avoid ambiguity, the index of the layers
is indicated between parentheses in this chapter. As shown by Equation 8.2,
deep ESNs are a hierarchical stack of reservoir layers that, e.g., by changing
the discount factor at each layer, extract a rich pool of multi-scale temporal
dynamics [Gallicchio et al., 2017]'. Given a deep ESN encoder, the input is
represented by the concatenation of the states from each layer, i.e., we obtain
node-level temporal encodings Ei for each i-th node and time step t as

Ry = (BB) (8.3)

Similarly, we indicate as H; the encoding for the whole time series collection
at the corresponding time ¢. Figure 8.2 provisides a visual representation of the
processing by showing, on the left-end side, how node-level temporal embeddings
are extracted from the input sequences; to simplify the drawing, the figure
shows an sigle-layer ESN.

Spatial propagation The next step is to propagate information among time
series. As discussed at the beginning of the section, we use powers of a graph
shift operator A to propagate and aggregate node representations at different
scales. By using a notation similar to Equation 8.3, we obtain spatiotemporal
encodings as

s = H, = (B |H"| ... |H").
s = Asi) = (AH|AHD).. | A HP),
5= (S8 185 (8.4)

We refer to [Gallicchio et al., 2018| for more details on the properties and stability of
deep ESNs.

121 8.3 Scalable spatiotemporal GNNs

where A indicates a generic graph shift operator matching the sparsity pattern of
the graph adjacency matrix. In practice, by indicating with D the graph degree
matrix, we use A = D' A in the case of a directed graph and the symmetrically
normalized adjacency A = D Y2AD~Y? in the undirected case. Furthermore,
for directed graphs we optionally increase the number of representations to
2K +1 to account for bidirectional dynamics, i.e., we repeat the encoding process
w.r.t. the transpose adjacency matrix similarly to [Li et al., 2018]. Intuitively,
each propagation step AS propagates and aggregates — properly weighted —
features between nodes connected by paths of length & in the graph. As shown in
Equation 8.4, features corresponding to each order k can be computed recursively
with K sparse matrix-matrix multiplications (Figure 8.2). Alternatively, each
matrix A* can be precomputed and the computation of the different blocks of
matrix S; can be distributed in a parallel fashion as suggested by Figure 8.1.
Even in the case of extremely large time series collections, features S; can be
computed offline by exploiting distributed computing as they do not need to be
loaded on GPU memory. The processing carried out in Equation 8.4 can be
equivalently viewed within the MP framework as

si= (i Agar {Bl}]...|

where N'® (i) denotes the neighborhood of the i-th node w.r.t. adjacency matrix
AF and the aggregation is performed by summing each representation multiplied
by the associated edge weight.

Acen (Rl }

AGGR {Ei}) (8.5)

]EN(K)

8.3.2 Multi-scale decoder

The role of the decoder is that of selecting and weighing (possibly redundant)
features from the pool extracted by the encoder and mapping them to the
desired output. Representations S, can be fed into an MLP that performs
node-wise predictions. Since the representations are large vectors, a naive
implementation of the MLP results in many parameters that hinder scalability.
Therefore, we replace the first MLP layer with a more efficient implementation
that exploits the structure of the embeddings.

Localized filters As we described in Section 8.3.1, S, is the concatenation of
the representations corresponding to different spatial propagation steps which,
in turn, are obtained from the concatenation of multi-scale temporal features.
To exploit this structure, we design the first layer of the decoder with a sparse

122 8.3 Scalable spatiotemporal GNNs

connectivity pattern to learn representations Z, s.t.

z® =4 (AkH§°>®,§°)|| . ||K’fH§L)®,§L)) (8.6)
el 0
=0 |S® : (8.7)
0 e"
4 0 K
z, = (212)...12"). (8.8)

where @,(f) € R%*% are the learnable parameters and ¢ is an activation function.
In practice, representations Z, can be efficiently computed by exploiting grouped
1-d convolutions (e.g., see Krizhevsky et al. 2012) to parallelize computation on
GPUs. In particular, if we indicate the 1-d grouped convolution operator with
g groups and kernel size r as *,,, and the collection of the decoder parameters
G)g) as ® we can compute Z; as

775 =0 (@ *1.9 gt) , (89)

with ¢ = L(K + 1) in the case of undirected graphs and ¢ = L(2K + 1) for
the directed case. Besides reducing the number of parameters by a factor of
L(K + 1), this architecture localizes filters @,(CL) w.r.t. the dynamics of spatial
order k and temporal scale [. In fact, as highlighted in Equation 8.6-8.8,
representation Z, can be seen as a concatenation of the results of L(K + 1)
graph convolutions of different order. Finally, the obtained representations are
fed into an MLP that predicts the H-step-ahead observations as

53\iL:1€+H = MLP (217 vi)) (81())

where the static node-level attributes v’ can also be augmented by concatenating
learnable node embeddings ¢ (see Chapter 5).

8.3.3 Training and sampling

The main improvement introduced by the proposed approach in terms of
scalability concerns the training procedure. Representations S, account for
both temporal and spatial dependencies among observations over the sensor
network. Consequently, each sample 8; can be processed independently since
spatiotemporal information has already been propagated. This allows for
training the decoder with SGD by uniformly and independently sampling mini-
batches of data points si. This is the key property that makes the training
procedure extremely scalable and drastically reduces training computational
requirements w.r.t. standard STGNN.

123 8.4 Related work

8.4 Related work

SGP falls within the category of TTS predictors, i.e., forecasting models models
where the temporal information is encoded before being propagated along the
spatial dimension. As already mentioned, research on scalable graph-based
methods for time series forecasting has been relatively limited. Practitioners
have mostly relied on methods developed in the context of static graphs which
include node-centric, GraphSAGE-like, approaches [Hamilton et al., 2017] or
subgraph sampling methods, such as ClusterGCN [Chiang et al., 2019| or
GraphSAINT [Zeng et al., 2020]. Wu et al. [2020]; Gandhi et al. [2021]; Wu
et al. [2021b] are examples of such approaches. Among scalable GNNs for static
graphs, SIGN [Frasca et al., 2020] is the approach most related to our method.
Similarly to SGP, SIGN performs spatial propagation as a preprocessing step by
using different shift operators to aggregate across different graph neighborhoods,
which are then fed to an MLP. However, SIGN is limited to static graphs and
propagates raw node-level attributes. Finally, analogously to our approach,
DynGESN [Micheli and Tortorella, 2022| processes dynamical graphs with a
recurrent randomized architecture. However, the architecture in DynGESN
is completely randomized, while ours is hybrid as it combines randomized
components in the encoder with trainable parameters in the decoder.

8.5 Empirical results

We empirically evaluate our approach in two different scenarios. In the first,
we compare the performance of our forecasting architecture against state-of-
the-art methods on the already introduced traffic forecasting benchmarks. In
the second, we evaluate the scalability of the proposed method on large-scale
spatiotemporal time series datasets by considering two additional benchmarks
for load forecasting and PV production prediction. Further details on datasets,
baselines, and experimental settings can be found in the arxiv version of the

reference paper 2.

Datasets Besides traffic datasets (METR-LA and PEMS-BAY), we con-
sider two larger datasets from for assessing the scalability of the different
approaches. The first dataset is a larger version of CER-E, simply indicated
as CER; differently from the version introduced in Chapter 4, we do not limit
the analysis to load profiles coming from enterprises, but consider the full

’https://arxiv.org/abs/2209.06520

https://arxiv.org/abs/2209.06520

124 8.5 Empirical results

Table 8.1. Additional information on the considered datasets.

DATASET # steps # nodes # edges
METR-LA 34272 207 1515
PEMS-BAY 52116 325 2369
PV-US (100nn) | 8868 5016 417,199
CER (100nn) 8868 6435 639,369
PV-US 8868 5016 3,710,008
CER 8868 6435 3,186,369

network consisting of 6435 smart meters measuring energy consumption every
30 minutes at both residential and commercial /industrial premises. The second
large-scale dataset is obtained from the synthetic PV-US? dataset [Hummon
et al., 2012|, consisting of the simulated energy production of 5016 PV farms
scattered over the United States for the year 2006, aggregated in half an hour
intervals. Since the model does not have access to weather information, PV
production at neighboring farms is instrumental in obtaining good predictions.
CER-E and PV-US are at least an order of magnitude larger than the datasets
typically used for benchmarking spatiotemporal time series forecasting models.
Weighted adjacency matrices are obtained, similarly to datasets introduced in
Chapter 4, by applying a thresholded Gaussian kernel Shuman et al. [2013]
to the similarity matrices obtained by considering the geographic distance
among the sensors (PV-US) and the average weekly correntropy among the
time series (CER). Additional details on the datasets are reported on Table 8.1.

Baselines We consider models analogous to those discussed in Chapter 4:
LSTM a single global univariate LSTM [Hochreiter and Schmidhuber, 1997];

FC-LSTM an LSTM processing input sequences as if they were a single
high-dimensional multivariate time series;

DCRNN the GCRNN introduced by [Li et al., 2018|);

GraphWaveNet the graph-based convolutional model introduced by [Wu
et al., 2019.

Additionally, we include two more baselines:

3https://www.nrel.gov/grid/solar-power-data.html

https://www.nrel.gov/grid/solar-power-data.html

125 8.5 Empirical results

GatedGN (GGN) : a state-of-the-art TTS model introduced in [Satorras
et al., 2022] for which we consider two different configurations. The first
one (FC) uses attention over the full node set to perform spatial propagation,
while the second one (UG) constrains the attention to edges of the underlying
graph.

DynGESN : the echo state network for dynamical graphs proposed in [Micheli
and Tortorella, 2022].

For all the baselines, we use, whenever appropriate, the configuration found
in the original papers or in their open-source implementation; in all the other
cases we tune hyperparameters on the holdout validation set.

8.5.1 Experimental setup

To run the experiments, we considered the following scenarios and setups.

Traffic datasets For traffic datasets, we replicate the setup used in previous
works. In particular, each model is trained to predict the 12-step-ahead obser-
vations. In SGP, the input time series are first encoded by the spatiotemporal
encoder, and then the decoder is trained by sampling mini-batches along the
temporal dimension, i.e., by sampling B sequences G;_y.; of observations.

Scalability benchmarks For the large-scale datasets, we focus on assessing
the scalability of the different architectures rather than maximizing forecasting
accuracy. In particular, for both datasets, we consider the first 6 months of
data (4 for months for training, 1 month for validation, and 1 month for testing).
The models are trained to predict the next {00:30,07:30,11:00} hours. We
repeat the experiment in two different settings to test the scalability of the
different architectures w.r.t. the number of edges. In the first setting, we extract
the graph by sparsifying the graph adjacency matrix imposing a maximum of
100 neighbors for each node, while, in the second case, we do not constrain
the density of the adjacency matrix. Table 8.1 reports some details needed
to appreciate the difference in sparsity levels. To assess the performance in
terms of scalability, we fix a maximum GPU memory budget of 12 GB and
select the batch size accordingly; if a batch size of 1 does not fit in 12 GB, we
uniformly subsample edges of the graph to reduce the memory consumption.
Differently from the other baselines, in SGP we first preprocess the data to
obtain spatiotemporal embeddings and then train the decoder by uniformly

126 8.5 Empirical results

sampling the node representations. We train each model for 1 hour, then restore
the weights corresponding to the minimum training error and evaluate the
forecasts on the test set. The choice of not running validation at each epoch
was dictated by the fact that for some of the baselines running a validation
epoch would take a large portion of the 1 hour budget.

Additional details The time required to encode the datasets with SGP’s
encoder ranges from tens of seconds to &~ 4 minutes on an AMD EPYC
7513 processor with 32 parallel processes. To ensure reproducibility, the time
constraint is not imposed as a hard time out; conversely, we measure the time
required for the update step of each model on an NVIDIA RTX A5000 GPU and
fix the maximum number of updates accordingly. For SGP, the time required to
compute node embeddings was considered as part of the training time and the
number of updates was appropriately reduced to make the comparison fair. For
all the baselines, we keep the same architecture used in the traffic experiment.
For SGP we use the same hyperparameters for the decoder, but we reduce the
dimension of the embedding (the value of K') so that a preprocessed dataset can
fit in a maximum of ~ 80 GB of storage. To account for the different temporal
scales, we increase the window size for all baselines and increase the number of
layers in the ESN (while keeping the final size of H similar). For additional
details, we refer to [Cini et al., 2023a].

8.5.2 Results

Results for the traffic benchmarks are reported in Table 8.2; while the outcomes
of the scalability experiments are shown in Table 8.3. We consider MAE and
MAPE as evaluation metrics.

Traffic experiment The purpose of the first experiment is to demonstrate
that the proposed method achieves performance comparable to that of the state
of the art. In this regard, results in Table 8.2 show that SGP is among the
best-performing forecasting architectures in all the considered scenarios. The
full-attention baseline is the strongest competitor but, has time and memory
complexities that scale quadratically with the number of nodes. DynGESN,
the fully randomized architecture, despite being very fast to train, obtains
reasonable performance in short-range predictions but falls short over longer
forecasting horizons in the considered scenarios. Note that the performance of
DCRNN and GraphWaveNet are slightly different here w.r.t. Chapter 4 due to a
change in the exogenous variables being used. In light of these results, it is worth

127 8.5 Empirical results

Table 8.2. Results on benchmark traffic datasets (averaged over 3 independent runs).
We report MAE and MAPE averaged over a one-hour (12 steps) forecasting horizon.
We also show MAE for H € {15, 30,60} minutes time horizons. Bold numbers are
within a standard deviation from the best average.

METR-LA PEMS-BAY

MODELS 15m 30m 60m Average 15m 30m 60m Average

MAE MAE MAE | MAE MAPE | MAE MAE MAE | MAE MAPE
LSTM 2.99+.00 3.58+.00 4.43+.01|3.58+00 1.194.05 [1.39+.00 1.83+.01 2.35+.01|1.79+.00 4.16+.05
FC-LSTM |3.33+.01 3.43+.01 3.67+01|3.46x01 1.154.00|2.22401 2.25+.01 2.342.02|2.26+.01 5.33x.04
DynGESN |3.27+.00 3.99+.00 5.00+.003.98+.00 11.114.01) 1.57+.00 2.13+.01 2.81x.02|2.09+.01 4.74x.01
DCRNN |2.82+.00 3.23+.01 3.74x.01|3.20x.00 8.88+.05|1.36+.00 1.71+00 2.08+.01|1.66+.00 3.76=.01
GWNet 2.72+.01 3.10+.02 3.54+.03|3.06+.02 8.40+.03 |1.31+.00 1.64+.01 1.94+.01|1.58+.00 3.58+.02
FC-GGN |2.72+.01 3.05+.01 3.44+.01{3.01x.00 8.27+.00/1.32+.00 1.63+.01 1.89+.01|1.56+.01 3.51+.03
UG-GGN [2.72+.00 3.10+.00 3.54x.01|3.06+.00 8.40+.04|1.33+.00 1.67+01 1.99+.01|1.61+.01 3.59+.03
SGP 2.69+.003.05+.00 3.45+.00/3.00+.00 8.27+.02/1.30+.00 1.60+.00 1.884+.00|1.54+.00 3.44+.01
Ablations
7N0—Graph 2.84+.00 3.26+.00 3.74%.00|3.222.00 9.20+.01 | 1.341.00 1.68+.00 2.02+.00|1.62+.00 3.67+.01
~FC-Dec. |2.76+01 3.13+01 3.52+.02(3.08+.01 8.63+.11|1.35+.01 1.67+01 1.962.01|1.61+01 3.61+.04
~GC-Dec. |2.77+00 3.17+00 3.63+.00|3.12+00 8.74x.01 |1.324.00 1.65+.00 1.97+.00]1.59+.00 3.60+.01

commenting on the efficiency of SGP compared to the baselines. Approaches
like DCRNN and GraphWaveNet, perform graph convolutions whose time and
space of complexity is O(W (N + |£])), being |E| the number of edges, L the
number of layers (8 in Graph Wavenet), and W the window size. In SGP,
this complexity is completely amortized by the preprocessing step. Similarly,
GatedGN, while being a TTS model, can incur in scalability issues (as shown in
the next experiment). The bottom of Table 8.2 reports results for the ablation
of key elements of the proposed architecture: No-Graph indicates a variant
of the model that does not incorporate the spatial propagation step; FC-Dec.
consider the case where the sparse weight matrix in Equation 8.7 is replaced
by a fully-connected one; GC-Dec.
propagation is limited to the neighbors of order K = 1 and, thus, the decoder
behaves similarly to a single-layer graph convolutional network. Results clearly
show the advantages of the proposed design.

indicates a variant where the spatial

Large-scale experiment Table 8.3 reports the results of the scalability
experiment where we considered only the STGNNSs trained by SGD. We excluded
the full-attention baseline (FC-GatedGN) as its O(N?) complexity prevented

128 8.5 Empirical results

Table 8.3. Results on large-scale datasets (averaged over at least 3 independent runs).
We report MAE over H -step-ahead predictions, / = {30m, 7h30m, 11h}, together
with timings and memory consumption. * indicates that subsampling was needed to
comply with the memory constraints. Bold numbers are within a standard deviation

from the best average.

Prediction error (MAE) Resource utilization
MODELS
30m 7h30m 11h Batch/s Memory Batch
DCRNN | 1.39:00 3.34:2: 3.5444s| 2.04:0x 9.63GB 2
Z|GWNet | 145505 5.09:6 5265136 2.0leoz 1164 GB 2
2| UG-GGN| 1.3320s 2.94505 3.12:0a| 84lioo 1146 GB 5
BI=[SGP [1.09:01 3.14:2 3.16:10 | 116.58:s74 2.21 GB 4096
S| |DCRNN | 1.59+17 41020 4.93+60 | 1.37:00 11.59 GB 1*
= =|GWNet | 165220 6.93e58 7.93207| 772w 1135GB 2
=|UG-GGN | 1.610s 3.25401 3.0440s| 883+ 11.14 GB 1*
SGP 1.09:00 3.06+.11 3.13:15|118.644s35 2.21 GB 4096
DCRNN [0.22:00 0.284.00 0.294.00 | 143102 11.10 GB 2
Z|GWNet | 0.23200 0360 03620 | 241:0: 839GB 1
2| UG-GGN| 0.22:00 0.28:00 0.28:00| 82l:0s 1170 GB 4
2|~ [SGP 0.21:00 0.30:00 0.31:t0 |117.324856 2.21 GB 4096
% DCRNN | 0.23400 0.29:00 0.29:100| 1.13+0: 11.10 GB 1
=|GWNet | 025201 0.38208 0.37e01 | 12620 858GB 1
=| UG-GGN| 022100 0.28+.00 0.29:.00| 87710 11.14 GB 1*
SGP 0.214.00 0.30x00 0.31c0: |115.854160 2.21 GB 4096

scaling to the larger datasets; however, we considered the UG version where
attention is restrained to each node’s neighborhood. Several comments need to
be made here. First of all, batch size has a different meaning for our model and
the other baselines. In our case, each sample corresponds to a single preprocessed
representation (corresponding to a single observation); for the other methods,
a sample corresponds to a window of observations G;_y.; where edges of the
graph are eventually subsampled if the memory constraints could not be met
otherwise. In both cases, the loss is computed w.r.t. all the observations in
the batch. The results clearly show that SGP can be trained efficiently also in
resource-constrained settings, with contained GPU memory usage. In particular,

129 8.6 Discussion and future directions

SGP encoding done

— SGP
UG-Gated-GN

—— DCRNN

—— Graph WaveNet

Train MAE

I
1
1
1
1
1
3- L
1
I .
0 10 20

Figure 8.3. Training curves on PV-US. The plot shows the average + the standard
deviation of 3 independent runs. The plotted curves are smoothed with a running
average of 8 steps.

30 40 50 60
[minutes]

the update frequency (batch/s) is up to 2 order of magnitude higher. Notably,
resource utilization at training time remains constant, while almost all the
baselines require edge subsampling to meet resource constraints. Figure 8.3
shows learning curves for the PV-US dataset, further highlighting the vastly
superior efficiency, scalability, and learning stability of SGP. Finally, results
concerning forecasting accuracy show that performance is competitive with the
state of the art in all the considered scenarios.

8.6 Discussion and future directions

In this chapter, we addressed the problem of scalability in STGNNs, mainly
by introducing SGP, a scalable architecture for graph-based time series fore-
casting. Our approach is competitive with the state of the art in popular
medium-sized benchmark datasets, while greatly improving scalability in large
sensor networks. While in SGP sampling largely reduces GPU memory usage
compared to the other methods, the entire processed sequence can take up a
large portion of system memory, depending on the reservoir size. Nevertheless,
the preprocessing can be distributed, and the preprocessed data stored on disk
and loaded in batches during training, as customary for large datasets. Further-
more, having separate encoding and decoding can be less effective in certain

130 8.6 Discussion and future directions

scenarios and more reliant on hyperparameter selection compared to end-to-end
approaches. Nonetheless, we believe that SGP has a wide application potential,
and constitutes an important piece for future research on scalable graph-based
forecasting architectures.

Future directions Future work can explore scalable architectures with tighter
integration of the spatial and temporal encoding components and assess per-
formance on even larger benchmarks. One could also consider extensions of
SGP-like architectures to settings where both the edge attributes and the under-
lying graph are dynamic. This could be done, for example, following the TTS
approach introduced in Gao and Ribeiro [2022| which consists of processing
padded sequences of edge attributes with a temporal edge encoder to obtain
a static graph representation. Dimensionality reduction techniques could be
considered to reduce the size of the precomputed representations [Bianchi et al.,
2020c|. Finally, other graph diffusion mechanisms could be considered for the
spatial propagation step, e.g., by considering operators inspired by recent work
on graph convolutions as gradient flows [Di Giovanni et al., 2023].

Chapter 9

Graph-based hierarchical
forecasting

We have shown that the models introduced so far can achieve remarkable results
on several scenarios. Addressing the challenges identified within the thesis
has in fact led to the development of a flexible and mature framework for
correlated time series forecasting. Although the methodology currently appears
perfectly adequate for modeling pairwise dependencies at a fixed spatiotemporal
resolution, it falls short in capturing the input dynamics at multiple spatiotem-
poral scales. This chapter presents a first step toward graph-based methods
enabling the processing of input time series at different level of aggregation
along the spatial dimension. To do so, we exploit ideas for hierarchical time
series forecasting [Hyndman et al., 2011] to hierarchically group time series into
clusters. Each level of the resulting hierarchy, will then correspond to a specific
level of aggregation. In the following, we propose a novel and comprehensive
graph-based framework for hierarchical time series clustering and forecasting.
Our approach unifies hierarchical time series processing, graph pooling oper-
ators, and graph-based neural forecasting methods and results in a learning
architecture for multi-step ahead forecasting operating at different levels of
spatial resolution. Hierarchical and relational dependencies are embedded as
inductive biases into the processing by exploiting neural message passing and
graph pooling operators |Grattarola et al., 2022]. The proposed methodology,
named Hierarchical Graph Predictor (HiGP) can propagate representations
along the hierarchical structure and ensure the coherency of predictions w.r.t. ag-
gregation constraints. In particular, we focus on settings where the hierarchical
structure is not given but learned directly from data.

Section 9.1 discusses hierarchical time series processing, graph pooling

131

132

methods, and related works. Section 9.2 introduces the problem settings and
provides preliminary concepts on hierarchical time series. Section 9.3 presents
the proposed methods, first by assuming the existence of a predefined hierarchy
and then providing a method to learn clusters directly from data. Section 9.4
empirically validate the proposed framework. Section 9.5, then, discusses the
main outcomes of the research and indicates possible future directions.

Reference papers The content of the chapter is partly based on material
from the following papers.

e Andrea Cini, Danilo Mandic, and Cesare Alippi. Graph-based Time
Series Clustering for End-to-End Hierarchical Forecasting. International
Conference on Machine Learning, 2024

133 9.1 Hierarchical time series and graph clustering

9.1 Hierarchical time series and graph clustering

In most applications, collections of related time series can be organized and
aggregated within a hierarchical structure. One practical example is forecasting
energy consumption profiles which can be aggregated at the level of individual
households as well as at city, regional, and national scales |Taieb et al., 2021].
Similar arguments can be made for forecasting photovoltaic production [Yang
et al., 2017b], financial time series [Athanasopoulos et al., 2020], and the influx
of tourists [Athanasopoulos et al., 2009], to name a few relevant application
domains. By exploiting aggregation constraints, forecasts at different levels can
be combined to obtain predictions at different levels of resolution. Similarly,
coherency constraints can be used to regularize forecasts obtained for the
different levels by considering forecast reconciliation (FR) methods [Hyndman
et al., 2011; Wickramasuriya et al., 2019; Panagiotelis et al., 2023]. Said
differently, constraining forecasts at different levels to “add up” can positively
impact forecasting accuracy. Based on similar ideas, cluster-based aggregate
forecasting methods learn to predict aggregates of clustered time series as an
intermediate step for obtaining forecasts for the total aggregate [Alzate and
Sinn, 2013; Fahiman et al., 2017; Cini et al., 2020]. The idea underlying both
approaches is that combining multiple forecasts reduces variance, an observation
dating back to Bates and Granger [1969]. In particular, FR is a special case
of forecast combinations [Hollyman et al., 2021]. We argue that hierarchical
representations can complement the relational inductive biases used so far to
forecast groups of correlated time series.

Graph pooling and clustering The combination of GDL methods and
hierarchical representations have been considered in the context of static graph
by introducing graph pooling operators [Ying et al., 2018; Grattarola et al., 2022;
Bacciu et al., 2023], i.e., operators that corsen the input graph often by grouping
subsets of nodes Bianchi et al. [2020a|. Graph pooling methods enable GNN
architectures to learn how to cluster nodes and obtain hierarchical, higher-order,
graph representations that can be tailored to the task at hand |Bianchi and
Lachi, 2023]. Yet the application of learnable graph pooling operators and
the combination of hierarchical and relational constraints are underexplored
in graph-based forecasting. HiGP fills this void by unifying graph-based and
hierarchical representations for time series forecasting.

134 9.1 Hierarchical time series and graph clustering

9.1.1 Related work

Hierarchical forecasting Hierarchical forecasting is a widely studied prob-
lem in time series analysis [Hyndman and Athanasopoulos, 2018; Hyndman
et al., 2011|. The standard approach consists of obtaining (possibly independent)
forecasts for (a subset of) the time series in the hierarchy in a first stage and
then, in a separate step, reconciling and combining them to obtain (possibly
coherent) predictions for the full hierarchy [Hyndman et al., 2011; Ben Taieb
and Koo, 2019; Wickramasuriya et al., 2019]. In particular, MinT [Wickra-
masuriya et al., 2019] allows for obtaining optimal reconciled forecasts given
a set of unbiased H-step-ahead predictions and the covariance matrix of the
associated residuals. Analogous reconciliation methods have also been developed
for probabilistic forecasts [Wickramasuriya, 2023; Taieb et al., 2017; Corani
et al., 2021]. End-to-end methods have been instead proposed in the context of
deep learning for time series forecasting by exploiting the hierarchical structure
either as a hard [Rangapuram et al., 2021; Zhou et al., 2023; Das et al., 2023| or
soft constraint [Paria et al., 2021; Han et al., 2021]. Notably, Rangapuram et al.
[2021] incorporate the reconciliation step within the neural architecture as a
differentiable convex optimization layer [Agrawal et al., 2019] and obtain proba-
bilistic forecasts by MC sampling. None of these methods consider relational
dependencies among and within the levels of the hierarchical structure.

Hierarchical graph-based architectures Graph pooling operators have
been widely studied in GNN models for i.i.d. data [Grattarola et al., 2022;
Bianchi and Lachi, 2023, but their application to time series data has received
limited attention. Dense trainable pooling methods [Ying et al., 2018; Bianchi
et al., 2020a; Hansen and Bianchi, 2023| learn soft cluster assignment regularized
by considering the graph structure. Sparse approaches, instead, produce hard
cluster assignments usually learned by exploiting both the graph structure
and a learned ranking on the nodes |Bacciu et al., 2023; Gao and Ji, 2019].
Finally, non-trainable methods exploit a clustering of the nodes performed
independently from the trained model [Bianchi et al., 2020b; Dhillon et al.,
2007]. Pyramidal graph-based architectures have also been exploited in reservoir
computing [Bianchi et al., 2022]. Rangapuram et al. [2023] have used GNNs
to propagate representation in temporal hierarchies. Concerning STGNNS,
hierarchical representations have been exploited in specific domains such as
traffic analytics [Yu et al., 2019; Guo et al., 2021a; Hermes et al., 2022], air
quality monitoring [Chen et al., 2021b], financial time series [Arya et al.,
2023], and pandemic forecasting [Ma et al., 2022]. In particular, Yu et al.

135 9.2 Preliminaries

[2019] propose a spatiotemporal graph U-network [Gao and Ji, 2019] where
representations are pooled and then un-pooled to obtain a hierarchical processing
of the time series. However, most of the above methods rely on fixed cluster
assignments; furthermore, none of them directly address the hierarchical time
series forecasting problem by optimizing predictions at each level of the hierarchy
to learn cluster assignments and taking into account coherency constraints.

9.2 Preliminaries

This section introduces preliminary concepts and provides the problem settings.

9.2.1 Operational settings

We consider the framework introduced in Chapter 3, but focus on univariate time
series. We also assume that simple scalar weights constitute edge attributes. In
particular, we consider a N univariate observations X; € RV*! at each time step
t, with associated exogenous variables U, € RV*%: to simplify the notation
we assume static attributes V' to be concatenated to exogenous variables
U, € RV*4u at each time step. We also assume pairwise relationships among
time series to be encoded by a static weighted adjacency matrix A € R¥*Y (and
associated edge weights £); extensions beyond these settings are relatively
straightforward. As usual, we focus on the multi-step time series forecasting
problem and point predictors.

Reference model As a reference model family F(- ;0), we consider a TTS
model (see Section 3.3.4) paired with local learnable node embeddings Q €
RN*ds (Chapter 5) where the input time series are processed by a temporal
encoder followed by a stack of MP layers such that

hy® = SEQENC (Z}_y.p Uiy, ') »
H{"' = MP,(H},). ©-1)

Note that in this chapter we used subscripts to denote the layer while superscripts
refer to the level of the hierarchy (see the next sections). Predictions can then
be obtained by using any decoder, e.g., an MLP as

&,y = MLP (hi’L> . (9.2)

136 9.2 Preliminaries

1 1 1 1 1 VAN
C=|11100 y1 y)2
00011 /1 N\ N\

Figure 9.1. Example of hierarchical time series from [Hyndman and Athanasopoulos,
2018].

9.2.2 Hierarchical time series

In the hierarchical setting, the set of raw time series is augmented by con-
sidering additional sequences obtained by progressively aggregating those at
the level below, thus building a pyramidal structure. In particular, bottom
observations (raw time series) are denoted as Y,” = X, while ;¥ € RM:x1,
with k& > 0, indicates values of Ny, series obtained by aggregating (e.g., summing
up) a partition of Yt(kfl). The full collection of both raw and aggregated
observations is denoted by matrix Y; € RM*! with N, = Zf:_ol Ny, obtained
by stacking the Y;(k) matrices vertically in decreasing order w.r.t. index k. In
general, the level of the hierarchy is denoted as a superscript between paren-
theses. The aggregation constraints can be encoded in an aggregation matrix
C € {0,1}Ne=N)XN quch that the i-th aggregate time series can be obtained as
Yyt = Zjvzl cl-ja:{, i.e., by summing the bottom-level observations given the
hierarchical constraints'. Given the above, the following relationships hold:

C

Y;:{I}Xt, MY,=[I|-C]Y:=0, (9.3)

where I indicates an identity matrix of appropriate dimensions and | the matrix
concatenation operator. Figure 9.1 provides an example of a time series hierarchy
with the associated aggregation matrix. A forecast Y, is said to be coherent if
the equality constraints in Equation 9.3 holds, i.e., if M l?t = 0. As discussed
in the following, learning to forecast time series at different resolutions can act
as an effective regularization mechanism, even when the hierarchical structure
is not predefined.

I'Note that superscript i + N does not refer to the level of the hierarchy but to the i-th
element of the entire flattened collection Y;.

137 9.3 Graph-based hierarchical clustering and forecasting

1 2
ths 1/15(77)‘ 1,t()
SEL
J e K K=2
=~y B (i
\ \O—" \‘——O l
— L-0~ - K=1 r o>—e@
N c~e0-B.0O0--0O-- L n
-] "
el l a
Bl o o - K=0
A —ed-o 977 0--0 /SN
-- Seo -0 A O
® t coN ; }
time t—s t—r t

Figure 9.2. Time series with a hierarchical relational structure. (Left) Graphical
representation of hierarchical time series with graph-side information; SRC operators
allow for modeling relationships among the time series in the hierarchy. (Right) Pyra-
midal graph encompassing both hierarchical and relational dependencies; each pair
of levels constitutes a bipartite graph.

9.3 Graph-based hierarchical clustering and fore-
casting

This section presents our approach to graph-based hierarchical time series fore-
casting. We start by discussing how to incorporate the hierarchical structure of
the problem into a graph-based neural architecture (Section 9.3.1); then, we fo-
cus on our target setting and show how the hierarchical structure can be directly
learned from data by exploiting trainable graph pooling operators (Section 9.3.2).
Finally, we introduce an appropriate forecasting reconciliation mechanism to
obtain forecasts coherent w.r.t. the learned hierarchy (Section 9.3.3).

9.3.1 Graph-based hierarchical forecasting

Embedding the hierarchical structure into the processing requires defining proper
operators. In particular, we aim at designing a pyramidal processing architecture
where each layer corresponds to a level of the time series hierarchy and has
its own topology, related to those at the adjacent layers by the hierarchical
structure. To obtain such processing, operators have to be specified to control
how information is propagated among and within the levels of the hierarchy; we
exploit the connection to graph pooling for defining such operators within the
select, reduce, connect (SRC) framework [Grattarola et al., 2022]. In particular,
we use SRC building blocks as a high-level formalization of the operators
required to perform clustering, aggregation, and graph rewiring at each level

138 9.3 Graph-based hierarchical clustering and forecasting

of the hierarchy. The three operators are defined as follows, by indicating as
Ht(k) € RNexdn g feature matrix corresponding to representations at the k-th
level of the hierarchy.

Select The selection operator SEL(-) outputs a mapping from input nodes into
supernodes (i.e., clusters) given by the aggregation constraints at each
level. The mapping can be encoded in a selection matrix SEL(Ht(k),)=
Sk € {0, 1}Ve-12Ne where s,; is equal to 1 if and only if the i-th time series
at level k — 1 is mapped to the j-th aggregate at the k-th level. If the
hierarchy is predefined, then the selection mechanism is given; conversely,
learning a selection matrix is the key challenge for designing an end-to-end
architecture and will be discussed in Section 9.3.2.

Reduce (and Lift) The reduction function RED(-) aggregates node features
and propagates information from the k-th level to the adjacent upper
level in the hierarchy. Reduction can be obtained by summation, i.e.,
RED(H" ™V, 8k)) = S(k)THt(k_l), but other choices are possible. In
practice, reduction is used in HiGP to propagate information along the
pyramidal structure by aggregating node representations and implement-
ing an inter-level MP mechanism (see Equation 9.6). Similarly, we define
the [ift operator as LIFT(Ht(kH), Sk = S(k)Ht(kH), l.e., as an upsam-
pling the pooled graph to the original size obtained by mapping each
supernode back to the aggregated nodes.

Connect The connect operator CON(-) defines how the topology of the input
graph is rewired after each aggregation step. There are several possible
choices; we consider the rewiring where each pair of supernodes is con-
nected by an edge with a weight obtained by summing weights of the edges
from one subset to the other, i.e., CON(S®) AK*-1D) = Sk At=1) gk)
where A% indicates the adjacency matrix w.r.t. k-th level.

These operators can be used to design neural processing architectures to match
the inductive biases coming from the hierarchical structure. Figure 9.2 provides
a graphical illustration of how these operators can be used to implement a
hierarchical processing architecture. In particular, the figure shows subsequent
applications of the selection, reduction and connection operators allow for
operating on a progressively coarser graph structure accounting for higher-order
dependencies. By exploiting the introduced operators, we can move from the

139 9.3 Graph-based hierarchical clustering and forecasting

reference architecture in Equation 9.1 to a hierarchical TTS model operating as

hgk)’i’o = SEQENC(k) <y§ﬁ)‘;f,:t, uiﬁ){;,:t, q(k)’i> , Temporal enc. (9.4)

Zt(k)’l = MPl(k) <Ht(k)’l, S(k)> , Intra-level prop. (9.5)

J

~~

Rep(F) Lirr(*)

I‘It(k)’lJrl = UPl(k) (Zt(k)’l, S(k)TZt(kil)’l, S(k)Zt(k+1)’l) . Inter-level prop. (9.6)

Equation 9.4 to 9.6 need further consideration to be fully appreciated. Matrix
Ht(k)’l indicates here representations w.r.t. the ¢-th time step obtained at the
[-th MP layer for time series at the k-th level of the hierarchy (note the
distinction between layers of MP and levels of the hierarchy). Compared to
the model in Equation 9.1, the hierarchical constraints add further structure to
the processing. As shown in Equation 9.4, each time series is at first encoded
along the temporal dimension by an encoder which can be either shared or
different for each aggregation level. Then, representations are processed by a
stack of layers propagating information within and among levels. As shown in
Equation 9.6, the representations are updated at each step by an update function
UPl(k)(-) (e.g., an MLP) taking as an input (1) the output ZM of an MP
layer w.r.t. the graph topology at the k-th level (Equation 9.5), (2) aggregated
features from the level k£ — 1 and (3) the features corresponding to each node’s
supernode obtained by lifting Ht(kﬂ)’l. Learnable parameters may optionally
be shared among the different levels of the hierarchy. Final predictions, as in
the reference architecture, can be obtained by using an arbitrary readout, i.e.,
a standard MLP as

Gy = MLP® (hﬁk)’i’L> (9.7)

and by training the model to minimize the forecasting error w.r.t. all the time
series and time steps, i.e.,

=

-1

ﬁ(ﬁ:t—&-fb 1ft:t—&-H) = € (i}t(th)rH7 Yt(fiH) . (98)
0

B
Il

Note that the model is trained to make predictions for each level of the hierarchy
at once. Representation at the different levels can capture patterns at different
spatial scales, less apparent at fine-grained resolutions. Indeed, the aggregation
and pooling operators increase the receptive field of each filter at each level of
the hierarchy. Discussion on how to further regularize predictions given the
hierarchical structure is postponed to Section 9.3.3.

140 9.3 Graph-based hierarchical clustering and forecasting

9.3.2 End-to-end clustering and forecasting

Learning a hierarchy and, consequently, a cluster-based forecasting architec-
ture translates into learning a (differentiable) parametrization of the selection
operator. For this task, we provide a general probabilistic framework, based
on modeling cluster assignments as realizations of a parametrized categorical
distribution. Then, we briefly discuss the applicability of standard graph pooling
methods from the literature at the end of the section.

End-to-end clustering Similarly to popular dense trainable graph pooling
operators [Bianchi et al., 2020a; Ying et al., 2018|, we parametrize the selection
operator with a score matrix ® € RM-1*Nr agsigning a score ¢;; to each
node-cluster pair. However, differently from previous works, we interpret such
scores as (unnormalized) log-probabilities, such that

k—1 — —
o1 = 7, (Y5, A%, QUY)
51T

S® ~ p(s™ = 1) = P
Zje w7

¥

(9.9)

where 7 is a temperature hyperparameter, while Fy(-) indicates a generic
trainable function with trainable parameters 7). The conditioning on the input
window Ytﬂ;,lz can be dropped to obtain static cluster assignments; furthermore,
depending on the dimensionality of the problem, the score matrix might also be
parametrized directly as ® = 1. Node embeddings and aggregates for the k-th
level are then obtained through the reduction operator as Q¥) = § (k)TQ(kfl)
and Yt(k) = S(k)TY;(k_l), respectively. To differentiate through the sampling
of 8®) we use the Gumbel softmax reparametrization trick [Jang et al., 2017;
Maddison et al., 2017| followed by a discretization step to obtain hard cluster
assignments via the straight-through gradient estimator [Bengio et al., 2013].
In practice, 7 is set to 1 at the beginning of training and is exponentially
decayed towards 0 at each training step. The above discretization step avoids
soft cluster assignments that could lead to degenerate solutions given the loss
in Equation 9.8. Uniform soft assignments are indeed likely to minimize the
variance of the aggregate time series and thus the prediction error at levels
k> 0.

Graph-based regularization To take the graph structure into account
when learning the assignments, we exploit the min-cut regularization introduced

141 9.3 Graph-based hierarchical clustering and forecasting

by Bianchi et al. [2020a], i.e., we add to the loss the term

Lo (Sh, A1) = (9.10)
Tr (S,Sk)TAv(k‘l)S,gk)) ‘ S g I

|51 50, VAR,

T ~

Tr (sﬁ’“) D(k—l)Sff“))

where D®*1 is the degree matrix of A*=D = D=3 A~V D=2 (i.e., of the sym-
metrically normalized adjacency matrix) and Sfﬁ) = softmax(cb(k)). The first
term in the equation is a continuous relaxation of the min-cut problem [Dhillon
et al., 2004| incentivizing the formation of clusters that pool together connected
components of the graph; the second term helps in preventing degenerate
solutions by favoring orthogonal cluster assignments [Bianchi et al., 2020a].

Training procedure The training objective identified in Equation 9.8 entails
that the cluster assignments are learned to minimize the forecasting error w.r.t.
both the bottom time series and aggregates. As a result, time series are clustered
s.t. aggregates at all levels are easier to predict, thus providing a meaningful
self-supervised learning signal. Intuitively, a signal will be easier to predict if
characterized low intra-cluster variance. At the same time, different levels in
the hierarchy will benefit from reading information from diverse supernodes,
thus favoring a high inter-cluster variance.

Alternative pooling operators Besides the clustering method described
here, HiGP is compatible with any graph pooling approach from the litera-
ture (see Grattarola et al. 2022). In particular, one might be interested in
exploiting non-trainable graph pooling operators that obtain cluster assign-
ments based on the graph topology only. The latter option becomes particularly
attractive when obtaining predictions w.r.t. particular sub-graphs, or localized
within specific connected components of the graph topology, is relevant for
the downstream application. We discussed a selection of appealing methods
from the literature in Section 9.1.1 and refer to Grattarola et al. [2022] for an
in-depth discussion.

9.3.3 Forecast reconciliation

As mentioned in Section 9.1, FR allows for obtaining coherent forecast w.r.t.
the hierarchical constraints (Equation 9.3). Furthermore, FR can often have a
positive impact on forecasting accuracy as reconciled forecasts are obtained as a

142 9.4 Empirical results

combination of the predictions made at the different levels [Hollyman et al., 2021].
We follow Rangapuram et al. [2021] and embed a (differentiable) reconciliation
step within the architecture as a projection onto the subspace of coherent
forecasts.

Forecast reconciliation Given (trainable) selection matrices U, ... S
for each level of the hierarchy, the M matrix (see Equation 9.3) can be obtained
as

M= M _C} - (9.11)
=[] - [T s T 500 | | s).

Then, raw predictions IAQ can be mapped into reconciled (coherent) forecasts Y,
through a projection onto the space of coherent forecasts (i.e., the null space of
M). The projection matrix can be computed as

P=I-M"(MM")" M, Y, = PY,, (9.12)
where P is obtained by solving the constrained optimization problem ming||Z —
2H2 s.t. MZ = 0. Model parameters are then learned by minimizing the
loss L = LY,Y)+L(Y,Y)+ A(Y,Y) where we omitted the time indices.
Note that minimizing the regularization term L(Y, }/}) is equivalent to mini-
mizing the distance between IAG:H g and the space of coherent forecasts. Unfor-
tunately, computing the inverse of M M7 incurs the cost O(N;’) in space and
(’)(N;) in time, which can be prohibitive for large time series collections. How-
ever, the solution is still practical for up to a few thousand nodes (most practical
applications), and the regularization term, computed as £79(Y", \) = A| MY ||,
can be used in the other cases as the only regularization. The above FR method
can be seamlessly integrated into our end-to-end forecasting framework, however,
many possible alternatives could be considered here. The design of ad-hoc rec-
onciliation methods for graph-based predictors is a promising research direction
for future works (see Section 9.5).

9.4 Empirical results

HiGP is validated over several settings considering the forecasting benchmarks
introduced in Chapter 4. Note that in these datasets, there is no predefined
hierarchical structure to start with. In particular, we focus on validating of the

143 9.4 Empirical results

proposed end-to-end clustering and forecasting architecture against relevant
baselines and state-of-the-art architectures. We then provide a qualitative
analysis of the learned time series clusters on datasets coming from sensor
networks. Additional details and results are provided in Appendix I and the
reference paper [Cini et al., 2024].

9.4.1 End-to-end hierarchical clustering and forecasting

The empirical evaluation was set up by considering the benchmark datasets
introduced in Chapter 4 (METR-LA, PEMS-BAY, AQI, and CER-E) and
the following baselines.

Baselines To carry out meaningful comparisons we consider the reference
TTS architecture (see Equation 9.1) obtained by stacking an node-wise temporal
encoder implemented by an RNN, two GNN layers, and an MLP readout as

RNN[dh] — MP[dh] — MP[dh] — FC[dh] — LIN[H]

where MP indicates a generic message-passing block, FC indicates a dense fully
connected layer, and LIN(H) is a linear layer with an output size corresponding
to the forecasting horizon. The number of neurons in each layer is indicated
as dj. Learnable node embeddings (Chapter 5) are concatenated to the input
before both the recurrent encoder and after the MP layers. We compare the
performance of different MP schemes commonly used in state-of-the-art graph-
based forecasting architectures. In particular, the considered alternatives include
the standard graph convolution (GConv-TTS, Kipf and Welling 2017), the
bidirectional diffusion convolution operator (Diff-T'TS, Li et al. 2018), a more
advanced gated MP scheme (Gated-TTS, Cini et al. 2023c), and a hierarchical
Graph U-Net (GUNet-TTS, Gao and Ji 2019). We use a standard GRU [Cho
et al., 2014] as sequence encoder for all the baselines. Finally, we denote by FC-
RNN the baseline which considers the input sequences as a single multivariate
time series and by RNNN the global univariate model. The number of neurons
dy, is selected for each dataset on the validation set (more details in Appendix I),
while the other hyperparameters are kept fixed among baselines (see Cini
et al. [2024]). The HiGP-TTS model is implemented following the above
template and Equation 9.4-9.6. Notably, the only architectural differences
w.r.t. the baselines is the addition of a hierarchical propagation step after
each MP layer and the addition of separate readouts for each level of the
hierarchy. HiGP is trained end-to-end as to minimize the forecasting error

144 9.4 Empirical results

Table 9.1. Forecasting performance on benchmark datasets (5 runs). Best result in
bold, second best underlined.

MODELS METR-LA PEMS-BAY CER-E AQI
MAE MRE (%) MAE MRE (%)| MAE MRE (%)| MAE MRE (%)
RNN 3.543+.005 6.134+.008 | 1.773+.001 2.839+.001 | 4.57+.00 21.65+.01 | 14.00+.03 21.84+.05

FC-RNN 3.566+.018 6.174+.031 | 2.305+.006 3.690+.009 | 7.13+.02 33.77+11 | 18.33+.11 28.59+.18
GConv-TTS | 3.071+.00s 5.317+.015 | 1.584+.006 2.536+.000 | 4.12+.02 19.50+.08 | 12.30+.02 19.20+.03
Diff-TTS 3.012+£.005 5.214+.008 | 1.569+.004 2.512+.006 | 4.11x.02 19.47+11 | 12.24+04 19.10+.05
Gated-TTS | 3.027+.00s 5.240+.013 | 1.582+.006 2.533+.000 | 4.13x.01 19.54+.06 | 12.07+.02 18.83+.03
GUNet-TTS | 3.057x.016 5.2921.028 | 1.575+.006 2.522+.010 | 4.08+.02 19.32+.10 | 12.25+.03 19.11+.05

HiGP-TTS (C)| 3.034+.00s 5.253+.013 | 1.567+0.005 2.508+0.008 | 4.11+.07 19.454.34 | 12.13+.02 18.92+.04
HiGP-TTS (D)| 3.009+.005 5.209+.008 [1.566+.005 2.506+.008| 4.12+.06 19.49+.30 | 12.10£.01 18.88+.02
HiGP-TTS (G)|3.007+.000 5.205+.016| 1.568+.00s 2.510+.013 |4.05+.01 19.20+.0312.02+.04 18.75+.06

w.r.t. the aggregates corresponding to the learned clusters. For this experiment,
we use a static learnable hierarchical structure with 3 levels consisting of raw
time series at the bottom, 20 supernodes in the middle level, and the total
aggregate as the single time series at the top level. Selection matrices are
learned directly by parametrizing the associated log-probabilities with tables of
trainable parameters.

Results Table 4.3 show the results of the extensive empirical evaluation. We
report HiGP forecasting accuracy w.r.t. 3 different MP schemes; in particular,
(C), (D), and (G) indicate respectively the standard graph convolution, the
diffusion convolution operator and the gated MP operator cited above. HiGP
variants are among the best-performing methods in all the considered settings.
Notably, hierarchical forecasting does not only act as self-supervision to learn
cluster assignments but also provides a positive inductive bias that results — on
average — in improved forecasting accuracy w.r.t. the flat architectures. Con-
versely, the GUNet baseline provides a comparison with a standard hierarchical
MP architecture which, in this case, underperforms.

Comparison against the state of the art Next, we perform an addi-
tional experiment by taking advantage of the popularity of METR-LA and
PEMS-BAY as traffic forecasting benchmarks and compare HiGP against spe-
cialized state-of-the-art architectures. We consider the following baselines: 1)
DCRNN |[Li et al., 2018], i.e., a recurrent introduced in Chapter 4; 2) Graph

145 9.4 Empirical results

Table 9.2. Results on traffic datasets (5 runs). Best results in bold, second best
underlined.

MAE
15 min. 30 min. 60 min.
DCRNN 2.82+00 3.23:t01 3.T4+m
GWNet 2.72+01 3.10x02 3.54+.03
Gated-GN 2.72+01 3.05+01 3.44+.01
SGP 2.69+.00 3.05+00 3.45+.00
HiGP (T) 2.68+.01 3.02:1.01 3.40+.01
No rel. prop. | 2.80+01 3.14+01 3.47+.02
No hier. prop. | 2.68+.01 3.03102 3.43+.02

DCRNN 1.36£00 1.71+00 2.08+.01
GWNet 1.31400 1.64+01 1.94+0
Gated-GN 1.32+00 1.63:t01 1.89:+m
SGP 1.30+.00 1.60+.00 1.88+.00
HiGP (T) 1.3100 1.61+00 1.87<+.00
No rel. prop. | 1.32+00 1.63+00 1.88+.01
No hier. prop. 1.31400 1.63+00 1.89+.00

MODELS

METR-LA

PEMS-BAY

WaveNet (GWNet), i.e., the already mentioned popular T&S graph convolu-
tional model introduced by Wu et al. [2019]; 3) Gated-GN |[Satorras et al.,
2022| the a gated MP architecture operating on a fully connected graph (see
also Section 8.5); 4) SGP [Cini et al., 2023a], i.e., the scalable architecture
exploiting a randomized spatiotemporal encoder as presented Chapter 8. In
this context, we tuned the HiGP architecture by simply adding residual connec-
tions and using a deeper MLP decoder; the tuned architecture is denoted as
HiGP (T). The simulation results for multi-step-ahead forecasting in the traffic
datasets, provided in Table 9.2, show that HiGP can achieve state-of-the-art
forecasting accuracy. Additionally, the same table reports an ablation study of
the proposed architecture. In particular, we consider two variants of the model:
the first is characterized by the removal of all the MP layers, while the second
does not perform any propagation of the learned representations through the
learned hierarchy. Results show that both aspects have a significant impact on
forecasting accuracy.

146 9.4 Empirical results

’s k=1,N; =20 k=2,N;= 10 k=3,N;,=5
=20 10
z
<15
2
<10 5
ey
= MO MW{ NN
= e —— 0 - < 0
Wed Thu Fri Sat Sun Wed Thu Fri Sat Sun Wed Thu Fri Sat Sun
(a) CER-E dataset.
k=2,N,=7 k=3,N,=5

100 100
| SOM N
W 60 60

s ; 0[N AR Y
20 20

Wed Thu Fri Sat Sun Wed Thu Fri Sat Sun Wed Thu Fri Sat Sun

&
2 80P\
o
g 0\
=]
<

IS
(=)
¥,

(b) AQI dataset.

Figure 9.3. Hierarchical cluster assignments learned by HiGP on 2 benchmark datasets.
The models have been trained with a 5-level hierarchy. The figure shows, from left
to right, the median for the clusters corresponding to levels from 1 to 3. The shaded
areas correspond to 0.6 and 0.4 quantiles.

9.4.2 Cluster analysis

We analyze clusters extracted by HiGP on the CER-E and AQI datasets.
Ideally, we would like to cluster customers w.r.t. their consumption patterns
in the first case, and to partition air quality monitoring stations w.r.t. their
dynamics and spatial location in the second. As discussed in Section 9.3.2,
HiGP learns the cluster assignments by minimizing the forecasting error at
each level of the hierarchy end-to-end. This form of self-supervision rewards,
then, the formation of clusters resulting in aggregates that are easy to predict.
At the same time, clusters are formed by taking the graph structure into
account (Equation 9.10). We configure HiGP to learn 3 hierarchical cluster
assignments and show the result of the procedure in Figure 9.3. In both scenarios,
HiGP extracts meaningful clusters with aggregates exhibiting different patterns.
Notably, each level corresponds to progressively smoother dynamics.

147 9.5 Discussion and future directions

9.5 Discussion and future directions

We introduced the Hierarchical Graph Predictor, a methodological framework
unifying relational and hierarchical inductive biases in deep learning archi-
tectures for time series forecasting. HiGP has been designed to learn hard
cluster assignments end-to-end, by taking the graph structure into account and
minimizing the forecasting error w.r.t. the resulting aggregates and bottom-level
time series. Performance on relevant benchmarks supports the validity of the
approach which, as we show, can also learn meaningful hierarchical cluster
assignments.

Future directions As we discussed, we believe that methods like HiGP, able
to operate at different scales, have the potential of enabling new powerful graph-
based time series processing architectures. There are many possible extensions
to the model presented here, which can be seen as a starting point for several
specific studies and research directions. Future works might focus more on the
clustering aspect and investigate additional auxiliary objectives to provide more
supervision to the procedure. Alternative reconciliation strategies should be
assessed as well, together with their impact on the learned cluster assignments
and forecasting accuracy. Future research could also apply HiGP-like methods
to settings where the hierarchical constraints are predefined. Finally, extensions
of the framework to multivariate, heterogenous, and irregularly sampled time
series [Marisca et al., 2024] would make the approach applicable to additional
relevant and practical application domains. We refer to Chapter 10 for additional
discussion on how methods operating at adaptive spatiotemporal resolution
might constitute a relevant topic for future research in the field.

148 9.5 Discussion and future directions

Chapter 10

Conclusion

In this research, we introduced a novel framework under which graph deep
learning forecasting models can be designed, understood, and deployed to
tackle real-world applications Cini et al. [2023b]. In particular, in Chapter 2
and 3, we proposed a comprehensive methodology for correlated time series
forecasting based on graph representations and graph neural networks [Cini
et al., 2023b|. In specifying the framework, we discussed available design choices
and their implications, providing guidelines to the practitioner. Chapter 4,
then, introduced benchmark datasets and empirically evaluated a selection of
reference architectures.

Chapter 5 introduced and discussed hybrid global and local forecasting mod-
els [Cini et al., 2023c|. In particular, we identified learnable node embeddings
as a methodology to effectively and efficiently design such architectures. We
then discussed how to structure the learning of such embeddings and the impact
of regularizations in transfer learning scenarios. Our work in this direction
provides necessary and key methodologies for the understanding and design of
effective graph-based predictors.

We pioneered several GDL methodologies for missing data imputation and
tackled the processing of irregular time series and sparse observations [Cini et al.,
2022b; Marisca et al., 2022; De Felice et al., 2024]. In Chapter 6, we discussed
the problem and introduced GRIN and SPIN, novel approaches to time series
imputation exploiting graph representations and relational inductive biases.
Compared to state-of-the-art baselines, our approach offers higher flexibility and
achieves better reconstruction accuracy on a wide range of relevant benchmarks.

In Chapter 7, we proposed a comprehensive framework for learning graph
distributions from correlated time series [Cini et al., 2023d|. In particular,
we introduced variance-reduced score-based gradient estimators allowing for

149

150 10.1 Future directions

keeping message-passing computations sparse throughout the training and
inference phases. Empirical results validate the effectiveness of the methodology
in controlled environments and benchmark data.

Chapter 8 introduced SGP, a scalable architecture for graph-based time series
forecasting based on training-free randomized encoder [Cini et al., 2023a]. SGP
is competitive against the state of the art, while greatly improving scalability
to processing data coming from large sensor networks.

Chapter 9 introduced HiGP, a methodology unifying relational and hierarchi-
cal inductive biases in deep learning architectures for time series forecasting [Cini
et al., 2024]. HiGP clusters and forecasts input time series at different levels of
spatial resolution.

The next section presents relevant topics for future research in the field.

10.1 Future directions

We identify a selection of promising future research directions which, we believe,
have the potential to widen the applicability of graph-based forecasting models.

Spatial and temporal hierarchies HiGP is one of the first examples of
a model that can operate on aggregate representations and multiple spatial
resolutions (see Chapter 9). Future research could focus on taking advantage of
the spatiotemporal structure of the data to process observations at different
scales both in time [Athanasopoulos et al., 2017] and in space [Hyndman et al.,
2011|. There have been several deep learning methods for hierarchical time
series forecasting [Rangapuram et al., 2021, 2023; Challu et al., 2023; Zhou
et al., 2023; Han et al., 2021], but only a few (e.g, [Marisca et al., 2024]) exploit
this framework in the context of grpah-based representations. Future works
should investigate methodologies to process spatiotemporal time series in an
integrated and hierarchical fashion across both time and space while accounting
for the coherency of the associated forecasts.

Continuous space-time models Continuous time (and/or space) models
based on differential equations have become popular in deep learning [Lu
et al., 2021; Chamberlain et al., 2021; Kovachki et al., 2023; Gravina et al.,
2023|. Approaches operating in continuous time are particularly appealing
when dealing with irregularly sampled data [Shukla and Marlin, 2020; Chen
et al., 2018a; Kidger et al., 2020]. Rubanova et al. [2019] pioneered research
of these methods in time-series applications. Graph-based approaches have

151 10.2 Final remarks

been recently adopting analogous approaches to modeling dynamic relational
data [Huang et al., 2021; Fang et al., 2021; Choi et al., 2022; Jin et al., 2022; Liu
et al., 2023d; Luo et al., 2023; Gravina et al., 2024a]. Particularly related to our
work, Gravina et al. [2024b| propose a continuous time model exploiting GNNs
to learn ODEs for modeling irregularly sampled correlated time series. Future
works should address the design of unifying frameworks for continuous space-
time modeling. In particular, models that process space and time continuously
in an integrated fashion should be further explored.

Probabilistic forecasts and uncertainty quantification While we fo-
cused on point predictions, deep learning methods have been widely applied to
probabilistic forecasting [Salinas et al., 2020; Wen et al., 2017; Rangapuram
et al., 2018; Gasthaus et al., 2019; de Bézenac et al., 2020]. One can in principle
exploit (most of) such methodologies to make STGNNs output probabilistic
predictions. In this regard, Wu et al. [2021a] carry out a study of several
standard uncertainty estimation techniques in the context of spatiotemporal
forecasting. However, while specialized probabilistic STGNN architectures
exist (e.g, Pal et al. [2021]; Chen et al. [2021a]), the topic is underexplored [Jin
et al., 2023b]. To fill this void, future research should further explore the use
of relational inductive biases to obtain calibrated probabilistic forecasts and
uncertainty estimates.

10.2 Final remarks

This thesis offers a foundation for future research to build on and plenty of re-
sources for practitioners to design effective and scalable graph-based forecasting
architecture. The main outcome of the thesis is a set of graph deep learning
methods aimed at enriching modern time series forecasting practices. Empirical
results on benchmark data show the remarkable potential of the technology.

The methodology is sound and the foundations of the framework are now
solid. Research carried out so far offers the support needed to bridge the gap
with the real world and enables the design of forecasting architectures targeting
practical, high-impact, applications.

152 10.2 Final remarks

Appendix A

Torch Spatiotemporal

Torch
Spatiotemporal

Figure A.1. Torch Spatiotemporal logo.

In the context of the thesis, we developed Torch Spatiotemporal (TSL) [Cini
and Marisca, 2022, a library for prototyping graph deep learning models for
processing time series collections. We provide an overview of its main func-
tionalities and refer to the official documentation' for more details. Figure A.1
shows the logo of the library.

Data handling and preprocessing TSL offers utilities for handling and
preprocessing collections of time series. In particular, we implemented ad-hoc
modules to allow for easy loading and batching of the data together with the
associated relational information. TSL adopts and implements the graph-based
framework and representation introduced in Section 3.1.

Model prototyping and training TSL builds upon PyTorch [Paszke et al.,
2019] and PyTorch Geometric (PyG) [Fey and Lenssen, 2019] and provides
utilities for enabling fast prototyping of STGNNs following as described in

'https://torch-spatiotemporal.readthedocs.io/en/latest/

153

https://torch-spatiotemporal.readthedocs.io/en/latest/

154 A.1 Related work

Chapter 3, allowing for easily implementing custom STMP lyers. Additionally,
TSL relies on the PyTorch Lightning framework [Falcon and The PyTorch
Lightning team, 2019] for training and inference pipelines.

Benchmarks and baselines TSL includes several benchmark detasets and
baselines from the state of the art (e.g., see Chapter 4). This allows to accelerate
research on the topic dramatically, as it enables the researcher to quickly go
from prototyping a model to comparing it against validated implementations of
reference architectures on plenty of datasets.

A.1 Related work

PyG [Fey and Lenssen, 2019| is the most widely used library for developing
GNNs. As the name suggests, PyG is based on PyTorch [Paszke et al., 2019]
and offers utilities to process both static and temporal relational data as
well. Specialized libraries that implement models from the temporal graph
learning literature also exist [Rozemberczki et al., 2021]. For what concerns
deep learning for time series processing, the PyTorch ecosystem offers several
options such as GluonTS [Alexandrov et al., 2020], PyTorch Forecasting?, Neural
Forecast [Olivares et al., 2022| and BasicTS [Liang et al., 2022a].

Zhttps://github.com /jdb78 /pytorch-forecasting

https://github.com/jdb78/pytorch-forecasting

Appendix B

Performance metrics

In this appendix we report formulas to compute the metrics used throughout
the thesis w.r.t. collection of (possibly multivariate) time series. For additional
discussion on mrtrics to evaluate point forecasts we refer to Hyndman and
Koehler [2006] and Gneiting [2011].

Mean absolute error (MAE) The mean absolute error is an scale-dependent
metric computed as

N
MAE (Xpor, Xeasr) = o D D (B.1)

Prediction minimizing the MAE are point forecasts of the median.

Mean squared error (MSE) The mean squared error is an scale-dependent
metric computed as

~

-1

N
—~ 2
MSE (X, Xuaer) = 7 3 [

‘ i
Lipr — Tigr|),
=1

(B.2)

Il
=)

T

Prediction minimizing the MSE are point forecasts of the mean.

Mean absolute percentage error (MAPE) The mean absolute percentage
error is a scale-independent metric computed as

—~ 100 =2 X |20, — 2
MAPE Xz, Xeayr) = 7 D3 | ZH—H7 (B:3)
T—O i= T

While the MAPE as the advantage of being scale-independent, its calculation
can be problematic if any value within the considered time series is (close to) 0.

155

156

Mean relative error (MRE) The mean relative error (also known as
weighted average percentage error — WAPE) is a scale-independent metric
computed as

¥ . Zz]il ZZ;(}Hi%-i-T - w§+rH1
MRE (X7, X) = 1005152 e . (B4
Dic1 2o 111

The advantage of MRE compared to MAPE is that it is less likely to result in
an undefined behavior if values of the target variables are close to 0.

Appendix C

Experimental setup

Benchmarks and baselines have been developed in Python [Van Rossum and
Drake, 2009| by relying on TSL [Cini and Marisca, 2022 and the following
open-source libraries.

PyTorch |Paszke et al., 2019];

PyTorch Lightning [Falcon and The PyTorch Lightning team, 2019];
PyTorch Geometric [Fey and Lenssen, 2019

numpy [Harris et al., 2020];

scikit-learn [Pedregosa et al., 2011];

Neptune [neptune.ai, 2021].

In addition to making TSL available for anyone, the code to reproduce the

experiments carried out in the thesis has been open-sourced and the associated
links can be found in the reference papers.

157

158

Appendix D

Appendix to Chapter 4

D.1 Additional details on the experimental setup

We provide additional details on the experimental settings for the results
presented in Chapter 4. In particular, we report a detailed description of the
reference architectures and additional details on the selected hyperparameters.

D.1.1 Reference architectures

The reference STGNNs architectures follow the template given in Section 3.3.3.
For all the baselines, the ENCODER is implemented a simple linear layer, while
we use an MLP with a single hidden layer for the DECODER. T'TS architectures
consists in a GRU followed by 2 layers of message passing. RNN+IMP use the
isotropic MP operator defined in Equation 3.4, while RNIN+AMP relies on
the anisotropic operator of Equation 3.5-3.6. In T&S models, instead, we use a
GRU where gates are implemented by using MP layers (see Equation 3.12-3.15)
We indicate as GCRNN-IMP and GCRNN-AMP the models equipped with
isotropic and anisotropic MP operators, respectively. Finally, for the standard
RNN baselines, we follow the same template (Equation 3.8-3.10) but use a
single GRU cell instead of the STMP blocks. For LocalRNNs, we train a
RNN for each each time series in the collection. In the FC-RNN architecture,
all the sequences are concatenated along the feature dimension and treated as
if they were a single multivariate time series.

159

160 D.1 Additional details on the experimental setup

D.1.2 Hyperparameters

The number of neurons in each layer for all the reference architectures is set
to 64 (reduced to 32 when exceeding the available memory capacity) and the
embedding size is set to 32 for all the reference architectures in all the benchmark
datasets. Analogous hyperparameters were used for the RNN baselines. For
GPVAR instead, we use 16 and 8 as hidden and embedding sizes, respectively.
For GPVAR experiments we use a batch size of 128 and train with early stopping
for a maximum of 200 epochs with the Adam optimizer [Kingma and Ba, 2015]
and a learning rate of 0.01 halved every 50 epochs. For the baselines from the
literature, we use the hyperparameters used in the original papers whenever
possible.

Appendix E

Appendix to Chapter 5

In Chapter 5, we use the same architectures and hyperparameters adopted
in Chapter 4 and detailed in Section D.1. We refer to [Cini et al., 2023c| for
additional details.

E.1 Transfer learning experiment

In the transfer learning experiments, we train the models with similar settings of
experiments in Table 5.3. The maximum number of training epochs is decreased
to 150, while the number of batches per epoch is increased to 500. We then
assume that 2 weeks of readings from the target dataset are available for fine-
tuning, and use the first week for training and the second as the validation set.
Then, we test fine-tuned models on the immediately following week (Table 5.5).
For the global model, we either tune all the parameters or none of them (zero-
shot setting). For fine-tuning, we increase the maximum number of epochs to
2000 without limiting the batches processed per epoch and fixing the learning
rate to 0.001. At the end of every training epoch, we compute the MAE on the
validation set and stop training if it has not decreased in the last 100 epochs,
restoring the model weights corresponding to the best-performing model. For
the global-local models with variational regularization on the embedding space,
during training, we set 5 = 0.05 and initialize the distribution parameters as

pi ~U(—0.01,0.01), o, =0.2.
For fine-tuning instead, we initialize the new embedding table Q' € RN %% ag
Ql ~U (_Aa A))

161

162 E.1 Transfer learning experiment

where A = 1d and remove the regularization loss. For the clustering regular-
q

ization, instead, we use K = 10 clusters and sum the clustering loss multiplied
by A = 0.5 to the forecasting objective. We initialize embedding, centroid, and
cluster assignment matrices as

Q~U(-AA) C~U(-AA) S~UO0,1)

respectively. For fine-tuning, we fix the centroid table C and initialize the
new embedding table Q' € RV % and cluster assignment matrix S’ € RV *K
following an analogous procedure. Finally, we increase the weight of the
regularization to A = 10.

E.1.1 Additional results

Tables E.1 to E.4 show additional results for the transfer learning experiments in
all the target datasets. In particular, each table shows results for the reference
architectures w.r.t. different training set sizes (from 1 day to 2 weeks) and
considers the settings where embeddings are fed to both encoder and decoder
or decoder only. We report results on the test data corresponding to the week
after the validation set but also on the original test split used in the literature.
In the last columns of the table, we also show the performance that one would
have obtained 100 epochs after the minimum in the validation error curve;
the purpose of showing these results is to hint at the performance that one
would have obtained without holding out 1 week of data for validation. The
results indeed suggest that fine-tuning the full global model is more prone to
overfitting.

Table E.1. Forecasting error (MAE) on PEMSO03 in the transfer learning setting (5
runs average).

Model Testing on 1 subsequent week Testing on the standard split Testing 100 epochs after validation min.
RNN+IMP 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day
Global 14.86=0.02 15.300.03 16.26+0.08 16.65x0.07 | 16.11x0.05 16.3620.05 16.95x0.04 17.39x0.12 | 16.30x0.10 16.58+0.07 17.62:+0.23 18.33z0.32

Embeddings | 14.53+0.02 14.640.05 15.87+0.0s 16.78x0.12 | 16.03+0.05 16.12x0.05 17.18+0.16 17.82x0.15 | 16.09+0.06 16.16+0.05 17.28x01s 17.94z017
Variational | 14.50+0.01 14.5600s 15.40+0.06 15.65+0.11 | 15.69+010 15.70x012 16.33+0.06 16.52+0.10 | 15.70+0.10 15.70+0.12 16.35+0.07 16.54x0.10
— Clustering |14.58z0.02 14.600.02 15.67x0.08 16.5320.13 | 15.65+0.07 15.71x0.08 16.76+0.15 17.76x0.15 | 15.70+0.05 15.74x0.07 16.80+0.14 17.78=0.14
Embeddings | 14.79+0.02 14.84:0.03 15.49+0.03 16.01x0.08 | 16.06+0.05 16.12x0.07 16.74x0.04 17.2520.07 | 16.08+0.05 16.13x0.07 16.75x0.04 17.29x0.06
— Variational | 15.33+00s 15.390.02 15.83+0.04 16.030.04 | 16.15+0.02 16.20+0.02 16.60+0.01 16.75+0.06 | 16.15+0.02 16.20+0.02 16.600.04 16.76=0.06
— Clustering |14.96z006 15.09z0.06 15.88+0.07 15.81:0.03 | 16.25+0.08 16.2920.06 16.72+0.08 16.87x0.07 | 16.2820.07 16.19x0.05 16.91x0.10 16.93x0.07

ENc.+DEc.

DEc.

163

E.1 Transfer learning experiment

Table E.2. Forecasting error (MAE) on PEMSO04 in the transfer learning setting (5
runs average).

Model Testing on 1 subsequent week. Testing on the standard split Testing 100 epochs after validation min.
RNN+IMP 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day
Global 20.86+0.03 21.59=011 21.84z0.06 22.2620.10 | 20.79x0.02 21.682010 22.10x0.10 22.59x0.1 | 20.89+0.05 21.97+013 22.88+0a7 23.85+0.22
¢ | Embeddings | 19.96x0.0s 20.27<011 21.03x014 21.992013 | 19.87x0.07 20.27+0.07 21.20x015 22.3820.14| 19.88x0.07 20.29+007 21.281014 22.4620.14
ﬁ Variational | 19.94+0.0s 20.19:005 20.71:0.12 21.20+0.15 | 19.921006 20.2310.05 20.82+0.08 21.46+0.13 | 19.9240.06 20.23+0.05 20.82:+0.08 21.47+0.12
5 — Clustering [19.69z006 19.912011 20.480.00 21.91x0.21 | 19.70x0.06 19.96x0.11 20.62+0.00 22.28z0.21 | 19.72x0.07 19.97x0.10 20.65x0.08 22.29=0.21
| Embeddings | 20.10+0.0s 20.27x0.04 20.870.0s 21.4420.00|20.18+0.07 20.3920.05 21.01x0.00 21.70+00s|20.1940.07 20.4020.05 21.0320.0s 21.74x008
E Variational | 20.79+0.06 20.94+0.05 21.23+0.07 21.51:+0.06 | 20.94+0.06 21.10+0.05 21.40+0.08 21.76+0.05 | 20.94+0.06 21.10+0.05 21.40+0.08 21.77+0.05
— Clustering |20.19z0.00 20.45z0.10 20.63x0.06 21.03x0.05 | 20.27x0.00 20.56x0.10 20.81x0.06 21.28x0.06 | 20.75+0.05 20.78x0.05 20.89x0.05 21.35z0.05

Table E.3. Forecasting error (MAE) on PEMSO07 in the transfer learning setting (5
runs average).

Model Testing on 1 subsequent week Testing on the standard split Testing 100 epochs after validation min.
RNN+IMP 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day
Global 22.87+005 23.82:0.08 24.52+0.06 25.40+0.06 | 22.640.00 23.58+0.02 24.20+0.06 25.04x0.06 | 22.7240.05 23.72x0.02 24.45:011 25.48x0.05
¢ | Embeddings | 21.68+007 22.23x0.0s 23.544019 26.11x0.61|22.10+000 22.77+0.05 24.17+024 26.79+0.63| 22. 110,00 22.78+005 24.21+0.22 26.82063
Q\ — Variational | 22.05+0.05 22.430.02 23.23x0.0s 24.40+0.13 | 22.18+0.01 22.59+0.01 23.44+011 24.62+0.3 | 22.18+0.04 22.59+0.04 23.4420.10 24.62+013
:x;i — Clustering |21.75+0.05 22.16+007 23.36+020 26.44+0.26 | 22.03+008 22.52+010 23.85+021 27.12+027 | 22.03+000 22.55+011 23.85+024 27.13x0.28
.| Embeddings |22.50+0.14 22.83x013 23.59+0.12 24.89x0.19 | 22.68+0.12 23.13x0.10 24.04x0.00 2541020 22.6920.2 23.1440.10 24.04x0.00 25.43x0:20
E — Variational | 24.32+0.16 24.60+0.16 25.12+017 25.50015 | 24.2550.14 24.602013 25.16+013 25.562012 | 24.25+014 24.60+013 25.16x013 25.57=0.12
— Clustering |23.02+0.00 23.53+000 24.42+015 24.87+013|23.18+0.00 23.77008 24.66+012 25.24+0.00 | 23.91+016 24.10+015 24.73+010 25.27=0.00

Table E.4. Forecasting error (MAE) on PEMSOS in the transfer learning setting (5
runs average).

Model Testing on 1 subsequent week Testing on the standard split Testing 100 epochs after validation min.
RNN+IMP 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day 2 weeks 1 week 3 days 1 day
Global 15.51+0.05 15.90+0.07 16.87+0.05 17.59+0.04 | 15.36+0.03 15.71x0.06 16.71+0.06 17.41+0.03 | 15.47+0.06 15.87+0.04 17.58+0.16 18.46+0.12
3 Embeddings |15.45+0.0s 15.45+0.06 16.34+0.07 17.15+0.08 | 15.34+0.07 15.32+0.04 16.27+0.07 17.1140.08 | 15.32+0.00 15.30+0.08 16.27+0.05 17.13+0.08
é\: — Variational | 15.3440.04 15.412006 15.83+007 16.3220.11 | 15.214003 15.272000 15.70x0.06 16.19x0.12 | 15.21+003 15.270.05 15.69x0.06 16.19x0.12
% Clustering |15.41+0.06 15.412006 15.96+0.04 16.99+0.07 | 15.27+0.07 15.272007 15.90x0.05 16.99+0.08 | 15.30+0.0s 15.28+0.07 15.90+0.05 17.02+0.10
| Embeddings |15.72+0.06 15.74x0.06 16.41+0.07 16.97+0.08 | 15.61+0.06 15.6140.06 16.3320.08 16.90+0.09 | 15.61006 15.6140.06 16.3520.0s 16.92+0.0
E — Variational | 16.3140.10 16.332015 16.53+015 16.742012 | 16.1320.00 16.142014 16.34x013 16.5520.11 | 16.1320.00 16.142013 16.35x014 16.56=0.11
Clustering | 15.8140.11 15924014 16.11400s 16.5540.10 | 15.7040.10 15.77+011 15.97+0.0s 16.43+0.10 | 15.98+0.06 15.90+0.06 16.01+0.08 16.45+0.11

164 E.1 Transfer learning experiment

Appendix F

Appendix to Chapter 6

F.1 Additional details on the experimental setup

We provide additional details on the experimental settings for the results
presented in Chapter 6.

F.1.1 Hyperparameters

For BRITS, we use the same network hyperparameters of Cao et al. [2018] for
the AQI-36 dataset. To account for the larger input dimension, for the other
datasets we increase the number of neurons to 128 for AQI and METR-LA
and 256 for PEMS-BAY and CER-E. The number of neurons was tuned on
the validation sets. For rGAIN we use the same number of units in the cells
of the bidirectional RNN used by BRITS, but we concatenate a random noise
vector (sampled from a uniform distribution) of dimension z = 4 to the input
vector in order to model the sampling of the data generating process. To obtain
predictions, we average out the outputs of k£ = 5 forward passes. We trained
all the above baselines by sampling at random batches of 32 elements for a
maximum of 300 epochs of 160 batches each and using early stopping with a
patience of 40 epochs. All methods are trained using a cosine learning rate
scheduler with initial value of 0.001, decayed over the 300 training epochs. For
VAR we used an autoregressive order of 5 steps and trained the model with
SGD. Here we used a batch size to 64 and a learning rate of 0.0005. The order
was selected with a small search in the range [2,12].

For GRIN we use the same training configurations of the other deep learning
baselines and the set a hidden dimension of 64 for all the layers. We did the
same for MPGRU. For all the deep learning methods we set the imputation

165

166 F.1 Additional details on the experimental setup

window size to W = 24 for all the datasets except AQI-36 for which we use
W = 36 steps, in line with Cao et al. [2018].

For SPIN, we use L = 4 layers, masking connections w.r.t. the missing
observation for the first n = 3 layers. For each layer, we set the hidden size
as dp = 32 and use ReLLU activation functions. For SPIN-H, we use similar
hyperparameters, but increase the number of layers to 5 and introduce K = 4
attention hubs for node with d, = 128. We use learning rate {r = 0.0008 and a
cosine scheduler with a warm-up of 12 steps and (partial) restarts every 100
epochs. Hyperparameters for SPIN have been selected with a small search
on the validation set; we expect far better performance to be achievable with
further tuning. We train SPIN with 300 mini-batches of 8 random samples for
a maximum of 300 epoch with early stopping.

We refer to [Cini et al., 2022b; Marisca et al., 2022] for additional details,
results and ablation studies.

Appendix G

Appendix to Chapter 7

G.1 Deferred proofs

The following provides proofs for Lemma 1 and Lemma 2.

G.1.1 Proof of Lemma 1
Note that for all A, A" € A = {0,1}*" the Fréchet function Fy can be

expressed as

Sn(A) =3r(A) =Eap, [|A - A'llF] (G.1)

w.r.t. the Frobenius norm, therefore

min §(A) = min Fr(A). (G.2)
Now, note that
§r(A") =Ep, [[|A—- A7) =Ep, [[A+p—p— AF] (G.3)

=Ep, [[|A — plli-] +2Ep, (A — p,p = A')p] + By, [l — A'|[7]

(G.4)

=By, (|14 = plli] +2(Ep,[A] - p.p— A)p+|p - Al (G5)

N

=0

Moreover, as the first term does not depend on A’, the minimum of Fr(A’)
corresponds to the minimum of

N

=A% = (miy — AL (G.6)

ij=1

167

168 G.2 Details on the computation of the SNS likelihood

G.1.2 Proof of Lemma 2

The neighborhood of each node n is sampled independently from the others, so
we derive the proof for a reference node n and the vector ¢ = ®,, . corresponding
to the associated edge scores.

Note that, for every pair of node i, j € S and scalar g € R

P(Gy, > g) > P(Gy, > 9) (G.7)
— efe_(g—%') _ Cdf@ (g) S Cdf¢j (g) _ 6737(9*'1’,7') (G8)

e®i _ e®i
— (e_efg> < (e_e g) . (G.9)

Being e=¢ Y < 1 and the e® monotone we obtain
P(Gy, > g) = P(Gy, > g) < €% > % = ¢; > ¢;. (G.10)

P(A,; = 1) can then be rewritten as

P(A,; =1) =P(Gy, € top-K{Gy, : 1 € S}) =P(Gy, > G) (G.11)
= [#(Gu 2 peialo) dg (@12

with G being the random variable associated with the K-th largest realization
in {Gy, : | € S} and pdf; its p.d.f., we obtain

P(A,; = 1) > P(A,; = 1) "5 p(G,, > g) > PGy, > g) "EZY ¢, > ¢,
(G.13)

concluding the proof.

G.2 Details on the computation of the SNS like-
lihood

In this appendix, we provide all the steps to obtain the rewriting of the likelihood
on an SNS sample introduced in Equation equation 7.30. The derivations

169 G.3 Additional details on the experimental setup

provided here follow from the results of Kool et al. [2020].

Dy(Skli) =P (ménG > max Ga%)

1€S\ Sk

€S

=P (mm Gy, > G¢>3\sk>

=P (G, > Gy, Vi € Sk

_ / pdf,,. . (9)P (G, > g.¥i € Si) dg

= [T1 (-t (@)t (9)do

’LESK
/ IT (1 cdty, (cdizl, ())) dv {omer g 0}
1€SK
/ H — (i ¢3\SK)) dv
1€SE
— exp (b)/ L &P®)—1 H (1 _ueXp(¢i—¢>5\sk+b)) du {u:ve,q)(,b)}
0

1€Sk

1
— exp (QbS\SK + C) / uexp(¢3\sK+C)—1 H (1 P ¢7,+C)) du {C:b—¢5\sK}7
0

1€Sk

which corresponds to the desired rewriting.

G.3 Additional details on the experimental setup

We provide additional details on the experimental settings for the results
presented in Chapter 7.

G.3.1 Synthetic experiments

For the graph identification experiments, we simply trained the different graph
identification modules using the Adam optimizer with a learning rate of 0.05 to
minimize the absolute error. For the joint graph identification and forecasting
experiment, we train on the generated dataset a GPVAR-G filter with L = 3
and () = 4 with parameters randomly initialized and fitted with Adam using the
same learning rate for the parameters of both graph filter and graph generator.

170 G.3 Additional details on the experimental setup

To avoid numeric instability, scores ® were soft-clipped to the interval (—5,5)
by using the tanh function.

G.3.2 AQI experiment

For the experiments on AQI we use a simple TTS model with a GRU encoder
with 2 hidden layers, followed by a GNN decoder with 2 graph convolutional
layers updating representations as:

ZVW =0 (D'AZYW + vV ZUTY) (G.14)

where W,V € R%*% are learnable weight matrices and o is a nonlinear
activation function (in particular we use Swish [Ramachandran et al., 2017]).
All layers have a hidden size of 64 units. We use an input window size of 24
steps and train for 100 epochs the models with the Adam optimizer with an
initial learning rate of 0.005 and a multi-step learning rate scheduler. For the
GRU baseline, we use a single recurrent layer of size 64 followed by an MLP
decoder with 1 hidden layer with 32 units. For the graph module, we use SNS
with K =5 and 4 dummy nodes and train with Adam with a learning rate of
0.01 for 200 epochs. At test time, we used models with weights corresponding
to the lowest validation error across epochs.

G.3.3 Traffic experiment

As reported in Chapter 7, we use the same architecture and hyperparameters of
the full graph model of Satorras et al. [2022], except for the gating mechanism
which was removed for the graph-based baselines. We train the models for
a maximum of 200 epochs with Adam and an initial learning rate of 0.003
and a multi-step scheduler. Note that we used an initial learning rate lower
than the one used in [Satorras et al., 2022] as we observed it was on average
leading to better performance. In each epoch, we used 200 mini-batches of size
64 for all the model variations, except for the full-attention model for which
—on PEMS-BAY — we had to limit the batch size to 16 due to GPU memory
limitations. For the graph learning module, we used SNS with K = 30 and
10 dummy nodes. We also used a temperature 7 = 0.5 to make the sampler
more deterministic. During evaluation, we used the A* to obtain test-time
predictions.

Appendix H

Appendix to Chapter 8

H.1 Additional details on the experimental setup

We provide additional details on the experimental settings for the results
presented in Chapter 8. In particular, being the chapter focused on the topic of
computation scalability, we provide details on the hardware platform as well.
We refer to [Cini et al., 2023a| for further details.

H.1.1 Hardware platform

Experiments were run on a server equipped with two AMD EPYC 7513 pro-
cessors and four NVIDIA RTX A5000. Reproducibility of the scalability ex-
periments was ensured by taking timings for the update step of each model
and setting the number of updates performed by each model accordingly (more
details in Sec. H.1.4).

H.1.2 Datasets

For all datasets, the only exogenous variable we consider is the encoding of
the time of the day with two sinusoidal functions. As PV-US has been used
only in this context through the thesis, we report here further details on the
benchmark.

PV-US The PV-US! dataset [Hummon et al., 2012] consists of a collection
of simulated energy production by 5016 PV farms for the year 2006. In the
raw datasets, samples are generated every 5 minute, we aggregate observations

'https://www.nrel.gov/grid/solar-power-data.html

171

https://www.nrel.gov/grid/solar-power-data.html

172 H.1 Additional details on the experimental setup

at 30 minutes intervals by taking their mean. A (small) subset of this dataset
(often referred to as “Solar Energy"?) with only the 137 PV plants in Alabama
state has been used as a multivariate time series forecasting benchmark [Lai
et al., 2018]. To obtain an adjacency matrix, we consider the virtual position of
the farms in terms of geographic coordinates, and we apply a Gaussian kernel
over the pairwise Haversine distances. Similarly to the CER dataset, we set the
window size of the baselines to 36 steps. The code to download and preprocess
the data has been open-sourced together with code to reproduce the observed
empirical results.

H.1.3 Additional details on the SGP architecture

We implemented the deep ESN encoder following the design principles assessed
in previous works |Gallicchio et al., 2018; Lukosevicius, 2012|. In particular,
we decrease the discount factor A progressively at each layer by subtracting
0.1 from its initial value. We also randomly set 30% of the weights of the
networks to 0 to obtain a sparse reservoir. We use tanh as nonlinear activation
function. The recurrent weights are normalized so that the spectral radius of
the corresponding matrix is lower than one [Jaeger, 2001].

For the spatial encoding, we compute the embeddings at the different spatial
scales iteratively. Additionally, we also concatenate to S, the graph-wise average
of the temporal embedding H; to act as a sort of global attribute.

The MLP decoder is implemented as standard feed-forward network with
parametrized residual connections between layers [Srivastava et al., 2015], SiLU
activation function [Hendrycks and Gimpel, 2016] and optional Dropout [Sri-
vastava et al., 2014] regularization.

H.1.4 Training and evaluation procedure

Traffic As previously mentioned, for the traffic datasets we used the same
training settings of previous and kept the same hyperparameters for all baselines
whenever possible. For SGP we selected hyperparameters by performing a small
search on the validation set. In particular, for METR-LA we used a deep ESN
with 3 layers of 32 units each, an initial decay factor of 0.9, and a spectral radius
of 0.9. For PEMS-BAY, instead, we used an encoder with a single layer of 128
units, a decay rate of 0.8, and a spectral radius of 0.9. For both datasets, we
set K = 4 and used the bidirectional encoding scheme. In the decoder, for the
first layer we used 32 units for each group in METR-LA and 96 PEMS-BAY,

Zhttps://github.com/laiguokun/multivariate-time-series-data

https://github.com/laiguokun/multivariate-time-series-data

173 H.1 Additional details on the experimental setup

followed by 2 fully connected layers of 256 units each with a dropout rate of 0.3.
The model is trained with early stopping for a maximum of 200 epochs of 300
batch each with the Adam optimizer and a multi-step learning rate scheduler.

Large-scale benchmarks In Table 8.3, we report the time required for a
single model update (in terms of batches per second) and GPU memory usage
for every considered method. To ensure a fair assessment, we record the time
interval between the beginning of the inference step and the end weights’ update
for 150 batches and exclude the first 5 and last 5 measurements (that may have
overheads). We exclude from the computation the overhead introduced — for
every batch — by the edge subsampling strategy adopted for the scalability of
the baselines.

To measure the GPU memory required, we exploit NVIDIA System Man-
agement Interface®, which provides near real-time GPU usage monitoring.

All the experiments designed to measure time and memory requirements
have been run on the same machine on a dedicated reserved GPU. We kept the
models mostly unchanged w.r.t. the traffic experiment. However, we increased
the window size to 36 for the baselines and updated the configuration of
the reservoir for SGP to account for the different time scales. In particular,
we increased the number of reservoir layers to 8 and 6 in PV-US and CER,
respectively, and reduced the number of units accordingly. The difference in
the number of layers between the two datasets is motivated by the choice of
keeping the size of the preprocessed sequences similar. For the same reason,
we also set K = 2 and use the unidirectional encoding to limit the amount of
required storage to a maximum =~ 80 GB for each dataset.

Baselines The LSTM and FC-LSTM baselines are implemented as single-
layer LSTM with 128 units followed by an MLP with one hidden layer of
256 units and dropout rate of 0.1. For DCRNN;, as reported in |Li et al.,
2018|, we set the number of units in the hidden state to 64 and the order
of the diffusion convolution to K = 2; compared to the original mode, we
use a feed-forward readout instead of a recurrent one to enable scalability on
the larger benchmarks. For GraphWaveNet and Gated-GN we use the same
hyperparameters and learning rate schedulers reported in the relative papers.
We implemented all the baselines in PyTorch and PyTorch Geometric (for
graph-based methods) following the open-source implementations provided by
the authors. To improve memory and computation efficiency in MP layers, we

3https://developer.nvidia.com/nvidia-system-management-interface

https://developer.nvidia.com/nvidia-system-management-interface

174 H.1 Additional details on the experimental setup

use sparse matrix-matrix multiplications instead of scatter-gather operations
whenever possible. We fix the maximum number of training epochs to 300 to
allow all the models to reach convergence, and stop the training if the MAE
computed on the validation set does not decrease for 50 epochs. We evaluate
the models using the weights corresponding to the minimum validation MAE.
For DynGESN we set the hyperparameters of the reservoir to the same ones
used for SGP and increase the number of units to approximately match the
dimensions of the final representation extracted by our method. We trained the
readout with Ridge regression by selecting the weight of the L2-regularization
term on the validation set.

Appendix 1

Appendix to Chapter 9

I.1 Additional details on the experimental setup

We provide additional details on the experimental settings for the results
presented in Chapter 9. We refer to [Cini et al., 2024] for additional details.

I.1.1 Reference architecture

As discussed in Section 9.4, the main empirical results of the chapter (Table 9.1),
were obtained by considering, for all the baselines, a template T'TS architecture
which can be schematically described as follows:

h‘?o = GRU (wi—W:ta u?;fW:t? qz)) (I 1)
H} =MP, (H).€), (1.2)
H} =MP, (H/,€), (1.3)

4)

@i, = Wil (Wi [hi®|q] +bs) +by, h=0,1,....H—-1, (L

with £() being the ELU activation function [Clevert et al., 2016], W), € R1*d
W), € R4 b, € R, by, € R™ denoting learnable weights. For HiGP, the
template was modified to account for the hierarchical structure as discussed in
Section 9.3.1. Similarly, for the GUNet baselines the template was modified to
take into account the pooling and lifting operations. For the tuned version of
HiGP we simply added skip connections and used a deeper readout.

I.1.2 Hyperparameters and training details

We trained each model with early stopping on the validation set and a batch
size of 64 samples for a maximum of 200 epochs each of 300 batches maximum.

175

176 I.1 Additional details on the experimental setup

We used the Adam optimizer with an initial learning rate of 0.003 reduced by
a factor v = 0.25 every 50 epochs. The number of neurons dj, in the layers of
each model was set to 64 or 32 based on the validation error on each dataset.
For HiGP, the regularization coefficient A was tuned and set to 0.25 based
on the validation error on the METR-LA dataset and simply rescaled for the
other datasets to take into account the different magnitude of the input. As
discussed in Section 9.4, we used a 3-level hierarchy with 20 super-nodes in
the middle level and a single super-node (the total aggregate) at the top level.
Intra-level spatial propagation was performed only at the base level. For the
Dift-T'TS baseline, the order of the diffusion convolution was set to k = 2, while
the pooling factor for the GUNet was set to p = 0.1. For what concerns the
experimental results in Table 9.2 we use the same settings used in Chapter 8.
Hyperparameters for HiGP (T) were obtained by tuning the model on the
validation set of both datasets separately.

Bibliography

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Dia-
mond, and J Zico Kolter. Differentiable convex optimization layers. Advances
in Neural Information Processing Systems, 32, 2019.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE:
A Gradient Estimator for k-Subset Sampling. In The Eleventh International

Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=GPJVuyX4p_h.

Juan Lopez Alcaraz and Nils Strodthoff. Diffusion-based Time Series Im-
putation and Forecasting with Structured State Space Models. Trans-
actions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=hHiIbk7ApW.

Ferran Alet, Erica Weng, Toméas Lozano-Pérez, and Leslie P Kaelbling. Neural
relational inference with fast modular meta-learning. Advances in Neural
Information Processing Systems, 32, 2019.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider,
Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix,

177

https://www.tensorflow.org/
https://openreview.net/forum?id=GPJVuyX4p_h
https://openreview.net/forum?id=GPJVuyX4p_h
https://openreview.net/forum?id=hHiIbk7ApW

178 Bibliography

Syama Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner
TAXrkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural Time
Series Modeling in Python. Journal of Machine Learning Research, 21(116):
1-6, 2020. URL http://jmlr.org/papers/v21/19-820.html.

Carlos Alzate and Mathieu Sinn. Improved electricity load forecasting via
kernel spectral clustering of smart meters. In 2013 IEEE 15th International
Conference on Data Mining, pages 943-948. IEEE, 2013.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro
Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Se-
bastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C.
Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon
Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning
the Language of Time Series, 2024.

Arie Arya, Yao Lei Xu, Ljubisa Stankovic, and Danilo Mandic. Hierarchical
Graph Learning for Stock Market Prediction Via a Domain-Aware Graph
Pooling Operator. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1-5. IEEE, 2023.

George Athanasopoulos, Roman A Ahmed, and Rob J Hyndman. Hierar-
chical forecasts for Australian domestic tourism. International Journal of
Forecasting, 25(1):146-166, 20009.

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios
Petropoulos. Forecasting with temporal hierarchies. European Journal of
Operational Research, 262(1):60-74, 2017.

George Athanasopoulos, Puwasala Gamakumara, Anastasios Panagiotelis, Rob J
Hyndman, and Mohamed Affan. Hierarchical forecasting. Macroeconomic
forecasting in the era of big data: Theory and practice, pages 689719, 2020.

James Atwood and Don Towsley. Diffusion-convolutional neural networks.
Advances in Neural Information Processing Systems, 29, 2016.

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle
introduction to deep learning for graphs. Neural Networks, 129:203-221, 2020.

Davide Bacciu, Alessio Conte, and Francesco Landolfi. Generalizing Downsam-
pling from Regular Data to Graphs. In Thirty-Seventh AAAI Conference on
Artificial Intelligence, 2023.

http://jmlr.org/papers/v21/19-820.html

179 Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. International Conference
on Learning Representations, 2015.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive Graph
Convolutional Recurrent Network for Traffic Forecasting. Advances in Neural
Information Processing Systems, 33, 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiw:1803.01271, 2018.

Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. Forecasting across time
series databases using recurrent neural networks on groups of similar series:
A clustering approach. Ezpert systems with applications, 140:112896, 2020.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein,
and Francesco Di Giovanni. Locality-Aware Graph Rewiring in GNNs.
In International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=4Ua4hKiAJX.

Claudio DT Barros, Matheus RF Mendonga, Alex B Vieira, and Artur Ziviani.

A survey on embedding dynamic graphs. ACM Computing Surveys (CSUR),
55(1):1-37, 2021.

John M Bates and Clive WJ Granger. The combination of forecasts. Journal
of the operational research society, 20(4):451-468, 1969.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Claudio Battiloro, Indro Spinelli, Lev Telyatnikov, Michael M. Bronstein,
Simone Scardapane, and Paolo Di Lorenzo. From Latent Graph to La-
tent Topology Inference: Differentiable Cell Complex Module. In In-
ternational Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=0JsSRZEGZ7L

Maximilian Beck, Korbinian Péppel, Markus Spanring, Andreas Auer, Oleksan-
dra Prudnikova, Michael Kopp, Giinter Klambauer, Johannes Brandstetter,
and Sepp Hochreiter. xLSTM: Extended Long Short-Term Memory. arXiv
preprint arXi:2405.04517, 2024.

https://openreview.net/forum?id=4Ua4hKiAJX
https://openreview.net/forum?id=0JsRZEGZ7L
https://openreview.net/forum?id=0JsRZEGZ7L

180 Bibliography

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. Advances in Neural Information Processing
Systems, 14, 2001.

Souhaib Ben Taieb and Bonsoo Koo. Regularized regression for hierarchical
forecasting without unbiasedness conditions. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining,
pages 13371347, 2019.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled
sampling for sequence prediction with recurrent neural networks. Advances
in Neural Information Processing Systems, 28, 2015.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-
pendencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157-166, 1994.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or prop-
agating gradients through stochastic neurons for conditional computation.
arXw preprint arXiv:1308.5432, 2013.

Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang
Wang, Danielle Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-
Schneider, David Salinas, Lorenzo Stella, Francois-Xavier Aubet, Laurent
Callot, and Tim Januschowski. Deep Learning for Time Series Forecasting: Tu-
torial and Literature Survey. ACM Comput. Surv., 55(6), dec 2022. ISSN 0360-
0300. doi: 10.1145/3533382. URL https://doi.org/10.1145/3533382.

Lorenzo Beretta and Alessandro Santaniello. Nearest neighbor imputation
algorithms: a critical evaluation. BMC medical informatics and decision
making, 16(3):197-208, 2016.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional
matrix completion. arXwv preprint arXiv:1706.02263, 2017.

Donald J Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining, pages 359-370, 1994.

Filippo Maria Bianchi and Veronica Lachi. The expressive power of pooling in
graph neural networks. Advances in Neural Information Processing Systems,
2023.

https://doi.org/10.1145/3533382

181 Bibliography

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral cluster-
ing with graph neural networks for graph pooling. In International conference
on machine learning, pages 874-883. PMLR, 2020a.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi.
Hierarchical representation learning in graph neural networks with node
decimation pooling. IEEFE Transactions on Neural Networks and Learning
Systems, 33(5):2195-2207, 2020b.

Filippo Maria Bianchi, Simone Scardapane, Sigurd Lgkse, and Robert Jenssen.
Reservoir computing approaches for representation and classification of mul-
tivariate time series. IEEE Transactions on Neural Networks and Learning
Systems, 32(5):2169-2179, 2020c.

Filippo Maria Bianchi, Claudio Gallicchio, and Alessio Micheli. Pyramidal
reservoir graph neural network. Neurocomputing, 470:389-404, 2022.

Marin Bilos, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan
Giinnemann. Modeling temporal data as continuous functions with stochastic
process diffusion. In International Conference on Machine Learning, pages

2452-2470. PMLR, 2023.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall,
and Noah D. Goodman. Pyro: Deep Universal Probabilistic Programming.
J. Mach. Learn. Res., 20:28:1-28:6, 2019. URL http://jmlr.org/papers/
v20/18-403.html.

Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional
time series forecasting with convolutional neural networks. arXiv preprint
arXiw:1705.04691, 2017.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung.
Time series analysis: forecasting and control. Holden-Day, San Francisco,

1970.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv
preprint arXiw:1711.07553, 2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovi¢. Geometric
deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXw:2104.13478, 2021.

http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html

182 Bibliography

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877-1901, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
networks and deep locally connected networks on graphs. In 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

Luca Butera, Andrea Cini, Alberto Ferrante, and Cesare Alippi. Object-Centric
Relational Representations for Image Generation. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirec-
tional recurrent imputation for time series. Advances in Neural Information
Processing Systems, 31, 2018.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez,
Max Mergenthaler Canseco, and Artur Dubrawski. N-HiTS: Neural hierar-
chical interpolation for time series forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 6989-6997, 2023.

Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael Bronstein,
Stefan Webb, and Emanuele Rossi. GRAND: Graph Neural Diffusion. In
Proceedings of the 38th International Conference on Machine Learning, pages
1407-1418. PMLR, July 2021.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and
Yan Liu. Recurrent neural networks for multivariate time series with missing
values. Scientific reports, 8(1):1-12, 2018.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng
Jia. Freeway performance measurement system: mining loop detector data.
Transportation Research Record, 1748(1):96-102, 2001.

Hongjie Chen, Ryan A Rossi, Kanak Mahadik, Sungchul Kim, and Hoda
Eldardiry. Graph Deep Factors for Forecasting with Applications to Cloud
Resource Allocation. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 106116, 2021a.

Ling Chen, Jiahui Xu, Binging Wu, Yuntao Qian, Zhenhong Du, Yansheng Li,
and Yongjun Zhang. Group-aware graph neural network for nationwide city
air quality forecasting. arXww preprint arXiv:2108.12238, 2021b.

183 Bibliography

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural Ordinary Differential Equations. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018a.

Sheng Chen, Stephen A Billings, and PM Grant. Non-linear system identification
using neural networks. International journal of control, 51(6):1191-1214, 1990.

Siyuan Chen, Jiahai Wang, and Guoqing Li. Neural relational inference with
efficient message passing mechanisms. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 7055-7063, 2021c.

Yakun Chen, Zihao Li, Chao Yang, Xianzhi Wang, Guodong Long, and Guan-
dong Xu. Adaptive graph recurrent network for multivariate time series
imputation. In International Conference on Neural Information Processing,
pages 64-73. Springer, 2022.

Yingmei Chen, Zhongyu Wei, and Xuanjing Huang. Incorporating corporation
relationship via graph convolutional neural networks for stock price prediction.
In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pages 1655-1658, 2018b.

Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic
forecasting with temporal convolutional neural network. Neurocomputing,
399:491-501, 2020.

Wei-Lin Chiang, Xuanqging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui
Hsieh. Cluster-GCN: An efficient algorithm for training deep and large
graph convolutional networks. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery € data mining, pages 257—
266, 2019.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiw:1409.1259, 2014.

Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. Graph
neural controlled differential equations for traffic forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 6367-6374,
2022.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXw preprint arXiww:1412.3555, 2014.

184 Bibliography

Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale
nonnegative matrix and tensor factorizations. IEICE transactions on funda-

mentals of electronics, communications and computer sciences, 92(3):708-721,
2009.

Andrea Cini and Ivan Marisca. Torch Spatiotemporal, 2022. URL https:
//github.com/TorchSpatiotemporal/tsl.

Andrea Cini, Slobodan Lukovic, and Cesare Alippi. Cluster-based aggregate
load forecasting with deep neural networks. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1-8. IEEE, 2020.

Andrea Cini, Carlo D’Eramo, Jan Peters, and Cesare Alippi. Deep reinforcement
learning with weighted Q-Learning. The Multi-disciplinary Conference on
Reinforcement Learning and Decision Making (RLDM), 2022a.

Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the G_ap_s: Multi-
variate Time Series Imputation by Graph Neural Networks. In International
Conference on Learning Representations, 2022b.

Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi. Scalable
Spatiotemporal Graph Neural Networks. Proceedings of the 37th AAAI
Conference on Artificial Intelligence, 2023a.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Graph Deep
Learning for Time Series Forecasting. arXiv preprint arXiw:2310.15978,
2023b.

Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming Local
Effects in Graph-based Spatiotemporal Forecasting. Advances in Neural
Information Processing Systems, 2023c.

Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning from
spatiotemporal time series. Journal of Machine Learning Research, 24(242):
1-36, 2023d.

Andrea Cini, Danilo Mandic, and Cesare Alippi. Graph-based Time Series
Clustering for End-to-End Hierarchical Forecasting. International Conference
on Machine Learning, 2024.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (ELUs). International
Conference on Learning Representations, 2016.

https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl

185 Bibliography

Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Com-
putational Harmonic Analysis, 21(1):5-30, 2006. ISSN 1063-5203. doi:
https://doi.org/10.1016/j.acha.2006.04.006.

Commission for Energy Regulation. CER Smart Metering Project - Elec-
tricity Customer Behaviour Trial, 2009-2010 |dataset|. Irish Social Science
Data Archive. SN: 0012-00, 2016. URL https://www.ucd.ie/issda/data/
commissionforenergyregulationcer.

Giorgio Corani, Dario Azzimonti, Joao PSC Augusto, and Marco Zaffalon.
Probabilistic reconciliation of hierarchical forecast via Bayes’ rule. In Machine
Learning and Knowledge Discovery in Databases: Furopean Conference,
ECML PKDD 2020, Ghent, Belgium, September 14—18, 2020, Proceedings,
Part III, pages 211-226. Springer, 2021.

Gongcalo Correia, Vlad Niculae, Wilker Aziz, and André Martins. Efficient
marginalization of discrete and structured latent variables via sparsity. Ad-
vances in Neural Information Processing Systems, 33:11789-11802, 2020.

Abhimanyu Das, Weihao Kong, Biswajit Paria, and Rajat Sen. Dirichlet
proportions model for hierarchically coherent probabilistic forecasting. In
Uncertainty in Artificial Intelligence, pages 518-528. PMLR, 2023.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only
foundation model for time-series forecasting, 2024.

Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis,
Michael Bohlke-Schneider, Richard Kurle, Lorenzo Stella, Hilaf Hasson,
Patrick Gallinari, and Tim Januschowski. Normalizing kalman filters for

multivariate time series analysis. Advances in Neural Information Processing
Systems, 33:2995-3007, 2020.

Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir Gusev, and Cesare
Alippi. Graph-based Virtual Sensing from Sparse and Partial Multivariate
Observations. In International Conference on Learning Representations, 2024.

Michagl Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. Advances in
Neural Information Processing Systems, 29:3844-3852, 2016.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in
multivariate time series. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4027-4035, 2021.

https://www.ucd.ie/issda/data/commissionforenergyregulationcer
https://www.ucd.ie/issda/data/commissionforenergyregulationcer

186 Bibliography

Inderjit S Dhillon, Yugiang Guan, and Brian Kulis. Kernel k-means: spectral
clustering and normalized cuts. In Proceedings of the tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
551-556, 2004.

Inderjit S Dhillon, Yuqgiang Guan, and Brian Kulis. Weighted graph cuts
without eigenvectors a multilevel approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(11):1944-1957, 2007.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro
Lio, and Michael M Bronstein. On over-squashing in message passing neural
networks: The impact of width, depth, and topology. In International
Conference on Machine Learning, pages 7865-7885. PMLR, 2023.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain,
Thomas Markovich, and Michael M. Bronstein. Understanding convolution on
graphs via energies. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=v5ew3FPTgb

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Va-
sudevan, Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A
Saurous. Tensorflow distributions. arXiv preprint arXiw:1711.10604, 2017.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst.
Learning Laplacian matrix in smooth graph signal representations. IEEE
Transactions on Signal Processing, 64(23):6160-6173, 2016.

Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learning
graphs from data: A signal representation perspective. IEEFE Signal Processing
Magazine, 36(3):44-63, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. In
International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Wenjie Du, David Cote, and Yan Liu. SAITS: Self-Attention-based Imputation
for Time Series. Fxpert Systems with Applications, 219:119619, 2023. ISSN
0957-4174. doi: 10.1016/j.eswa.2023.119619.

https://openreview.net/forum?id=v5ew3FPTgb
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

187 Bibliography

James Durbin and Siem Jan Koopman. Time series analysis by state space
methods. Oxford university press, 2012.

James Durbin and Geoffrey S Watson. Testing for Serial Correlation in Least
Squares Regression: 1. Biometrika, 37(3/4):409-428, 1950.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Graph Neural Networks with Learnable Structural and Posi-
tional Representations. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=wTTjnvGphYj.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking Graph Neural Networks.
Journal of Machine Learning Research, 24(43):1-48, 2023. URL http://
jmlr.org/papers/v24/22-0567.html.

Carlo D’Eramo, Andrea Cini, Alessandro Nuara, Matteo Pirotta, Cesare Alippi,
Jan Peters, and Marcello Restelli. Gaussian Approximation for Bias Reduction
in Q-Learning. Journal of Machine Learning Research, 22:1-51, 2021.

Simone Eandi, Andrea Cini, Slobodan Lukovic, and Cesare Alippi. Spatio-
Temporal Graph Neural Networks for Aggregate Load Forecasting. In 2022
International Joint Conference on Neural Networks (IJCNN), pages 1-8.
IEEE, 2022.

Nikolaos A Efkarpidis, Stefano Imoscopi, Martin Geidl, Andrea Cini, Slobo-
dan Lukovic, Cesare Alippi, and Ingo Herbst. Peak shaving in distribution
networks using stationary energy storage systems: A Swiss case study. Sus-
tainable Energy, Grids and Networks, 34:101018, 2023.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179-211,
1990.

Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama,
Mathias Niepert, and Francesco Alesiani. Adaptive Message Passing: A
General Framework to Mitigate Oversmoothing, Oversquashing, and Under-
reaching. arXiv preprint arXiv:2312.16560, 2023.

Fateme Fahiman, Sarah M Erfani, Sutharshan Rajasegarar, Marimuthu
Palaniswami, and Christopher Leckie. Improving load forecasting based
on deep learning and K-shape clustering. In 2017 international joint confer-
ence on neural networks (ILJCNN), pages 4134-4141. IEEE, 2017.

https://openreview.net/forum?id=wTTjnvGphYj
http://jmlr.org/papers/v24/22-0567.html
http://jmlr.org/papers/v24/22-0567.html

188 Bibliography

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019.
URL https://github.com/PyTorchLightning/pytorch-1lightning.

Zheng Fang, Qingqing Long, Guojie Song, and Kunqging Xie. Spatial-Temporal
Graph ODE Networks for Traffic Flow Forecasting. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD 21,
pages 364-373, New York, NY, USA, August 2021. Association for Computing
Machinery. ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467430.

Lorenzo Ferretti, Andrea Cini, Georgios Zacharopoulos, Cesare Alippi, and
Laura Pozzi. Graph neural networks for high-level synthesis design space
exploration. ACM Transactions on Design Automation of Electronic Systems,
28(2):1-20, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428, 2019.

Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktéschel,
Eric Xing, and Shimon Whiteson. Dice: The infinitely differentiable Monte
Carlo estimator. In International Conference on Machine Learning, pages
1529-1538. PMLR, 2018.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning
discrete structures for graph neural networks. In International Conference
on Machine Learning, pages 1972-1982. PMLR, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. Sign: Scalable inception graph neural net-
works. arXww preprint arXiv:2004.11198, 2020.

Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace
distancié. In Annales de l’institut Henri Poincaré, volume 10, pages 215310,
1948.

Cornelius Fritz, Emilio Dorigatti, and David Riigamer. Combining graph neural
networks and spatio-temporal disease models to improve the prediction of
weekly COVID-19 cases in Germany. Scientific Reports, 12(1):3930, 2022.

Daniel Y Fu, Elliot L. Epstein, Eric Nguyen, Armin W Thomas, Michael Zhang,
Tri Dao, Atri Rudra, and Christopher Ré. Simple hardware-efficient long

convolutions for sequence modeling. In International Conference on Machine
Learning, pages 10373-10391. PMLR, 2023.

https://github.com/PyTorchLightning/pytorch-lightning

189 Bibliography

Claudio Gallicchio and Simone Scardapane. Deep Randomized Neural Networks.
In Recent Trends in Learning From Data: Tutorials from the INNS Big Data
and Deep Learning Conference (INNSBDDL2019), pages 43—68. Springer,
2020.

Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reservoir computing:
A critical experimental analysis. Neurocomputing, 268:87-99, 2017.

Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Design of deep echo
state networks. Neural Networks, 108:33—47, 2018.

Ankit Gandhi, Sivaramakrishnan Kaveri, Vineet Chaoji, et al. Spatio-Temporal
Multi-graph Networks for Demand Forecasting in Online Marketplaces. In
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 187-203. Springer, 2021.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2083-2092. PMLR, 09-15 Jun 2019. URL https:
//proceedings.mlr.press/v97/gaol9a.html.

Jianfei Gao and Bruno Ribeiro. On the Equivalence Between Temporal and

Static Equivariant Graph Representations. In International Conference on
Machine Learning, pages 7052-7076. PMLR, 2022.

Azul Garza and Max Mergenthaler-Canseco. TimeGPT-1. arXiv preprint
arXw:2310.03589, 2023.

Alberto Gasparin, Slobodan Lukovic, and Cesare Alippi. Deep learning for time
series forecasting: The electric load case. CAAI Transactions on Intelligence
Technology, 7(1):1-25, 2022.

Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapu-
ram, David Salinas, Valentin Flunkert, and Tim Januschowski. Probabilistic
forecasting with spline quantile function RNNs. In The 22nd international
conference on artificial intelligence and statistics, pages 1901-1910. PMLR,
2019.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N
Dauphin. Convolutional sequence to sequence learning. In International
conference on machine learning, pages 1243-1252. PMLR, 2017.

https://proceedings.mlr.press/v97/gao19a.html
https://proceedings.mlr.press/v97/gao19a.html

190 Bibliography

Zoubin Ghahramani and Michael Jordan. Supervised learning from incomplete
data via an EM approach. In J. Cowan, G. Tesauro, and J. Alspector, editors,

Advances in Neural Information Processing Systems, volume 6. Morgan-
Kaufmann, 1994.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In Interna-
tional Conference on Machine Learning, pages 1263-1272. PMLR, 2017.

Paul Glasserman and Yu-Chi Ho. Gradient estimation via perturbation analysis,
volume 116. Springer Science & Business Media, 1991.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems.
Communications of the ACM, 33(10):75-84, 1990.

Tilmann Gneiting. Making and evaluating point forecasts. Journal of the
American Statistical Association, 106(494):746-762, 2011.

Dong Gong, Frederic Z Zhang, Javen Qinfeng Shi, and Anton Van Den Hengel.
Memory-augmented dynamic neural relational inference. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 11843
11852, 2021.

Colin Graber and Alexander G. Schwing. Dynamic Neural Relational Inference.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Clive WJ Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica: journal of the Econometric Society,
pages 424-438, 1969.

Francesco Grassi, Andreas Loukas, Nathanaél Perraudin, and Benjamin Ricaud.
A time-vertex signal processing framework: Scalable processing and meaning-
ful representations for time-series on graphs. IFEFE Transactions on Signal
Processing, 66(3):817-829, 2017.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud.
Backpropagation through the Void: Optimizing control variates for black-box

gradient estimation. In International Conference on Learning Representations,
2018.

191 Bibliography

Daniele Grattarola, Daniele Zambon, Filippo Bianchi, and Cesare Alippi. Under-
standing Pooling in Graph Neural Networks. IEEE Transactions on Neural
Networks and Learning Systems, pages 1-11, 2022. doi: 10.1109/TNNLS.
2022.3190922.

Alessio Gravina and Davide Bacciu. Deep learning for dynamic graphs: models
and benchmarks. [FEFE Transactions on Neural Networks and Learning
Systems, 2024.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN:
a stable architecture for Deep Graph Networks. In International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?
1d=J3Y7cgZ00S.

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas
Grohnfeldt. Long Range Propagation on Continuous-Time Dynamic Graphs.
International Conference on Machine Learning, 2024a.

Alessio Gravina, Daniele Zambon, Davide Bacciu, and Cesare Alippi. Tempo-
ral Graph ODEs for Irregularly-Sampled Time Series. International Joint
Conference on Artificial Intelligence, 2024b.

Jake Grigsby, Zhe Wang, and Yanjun Qi. Long-Range Transformers for Dynamic
Spatiotemporal Forecasting, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective
state spaces. arXiwv preprint arXw:2512.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently Modeling Long Se-
quences with Structured State Spaces. In International Conference on Learn-
ing Representations, 2022a. URL https://openreview.net/forum?id=
uYLFoz1vlAC.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the Parame-
terization and Initialization of Diagonal State Space Models. Advances in
Neural Information Processing Systems, 35, 2022b.

Kan Guo, Yongli Hu, Yanfeng Sun, Sean Qian, Junbin Gao, and Baocai Yin.
Hierarchical graph convolution network for traffic forecasting. In Proceedings
of the 35th AAAI conference on artificial intelligence, volume 35, pages
151-159, 2021a.

https://openreview.net/forum?id=J3Y7cgZOOS
https://openreview.net/forum?id=J3Y7cgZOOS
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

192 Bibliography

Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learn-
ing dynamics and heterogeneity of spatial-temporal graph data for traffic
forecasting. IEEE Transactions on Knowledge and Data Engineering, 2021b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are
as effective as structured state spaces. Advances in Neural Information
Processing Systems, 35:22982-22994, 2022.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco
Di Giovanni. DRew: Dynamically Rewired Message Passing with Delay . In
International Conference on Machine Learning, pages 12252-12267. PMLR,
2023.

James D Hamilton. Time Series Analysis. Princeton University pPress, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. Advances in Neural Information Processing Systems,
30, 2017.

Xing Han, Sambarta Dasgupta, and Joydeep Ghosh. Simultaneously reconciled
quantile forecasting of hierarchically related time series. In International
Conference on Artificial Intelligence and Statistics, pages 190-198. PMLR,
2021.

Jonas Berg Hansen and Filippo Maria Bianchi. Total variation graph neural
networks. In International Conference on Machine Learning, pages 12445
12468. PMLR, 2023.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J Smith, et al. Array programming with NumPy. Nature,
585(7825):357-362, 2020.

Andrew C Harvey et al. Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge Books, 1990.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units. arXiv preprint
arXw:1606.08415, 2016.

Luca Hermes, Barbara Hammer, Andrew Melnik, Riza Velioglu, Markus Vieth,
and Malte Schilling. A Graph-based U-Net Model for Predicting Traffic in
unseen Cities. In 2022 International Joint Conference on Neural Networks
(IJCNN), pages 1-8. IEEE, 2022.

193 Bibliography

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neu-
ral networks for time series forecasting: Current status and future directions.
International Journal of Forecasting, 37(1):388-427, 2021.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Ross Hollyman, Fotios Petropoulos, and Michael E Tipping. Understanding
forecast reconciliation. Furopean Journal of Operational Research, 294(1):
149-160, 2021.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua
Hu, Emanuele Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau,
and Reihaneh Rabbany. Temporal graph benchmark for machine learning on
temporal graphs. arXiw preprint arXiv:2307.01026, 2023.

Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics
from irregularly-sampled partial observations. Advances in Neural Information
Processing Systems, 33:16177-16187, 2020.

Zijie Huang, Yizhou Sun, and Wei Wang. Coupled Graph ODE for Learning
Interacting System Dynamics. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery € Data Mining, KDD 21, pages 705-715,
New York, NY, USA, August 2021. Association for Computing Machinery.
ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467385.

Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG Van Sloun. A
review of the gumbel-max trick and its extensions for discrete stochasticity
in machine learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1353-1371, 2022.

Marissa Hummon, Eduardo Ibanez, Gregory Brinkman, and Debra Lew. Sub-
hour solar data for power system modeling from static spatial variability
analysis. Technical report, National Renewable Energy Lab.(NREL), Golden,
CO (United States), 2012.

Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting
with exponential smoothing: the state space approach. Springer Science &
Business Media, 2008.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and
practice. OTexts, 2018.

194 Bibliography

Rob J Hyndman and Anne B Koehler. Another look at measures of forecast
accuracy. International journal of forecasting, 22(4):679-688, 2006.

Rob J Hyndman, Anne B Koehler, Ralph D Snyder, and Simone Grose. A
state space framework for automatic forecasting using exponential smoothing
methods. International Journal of Forecasting, 18(3):439-454, 2002.

Rob J Hyndman, Roman A Ahmed, George Athanasopoulos, and Han Lin Shang.
Optimal combination forecasts for hierarchical time series. Computational
statistics € data analysis, 55(9):2579-2589, 2011.

Ditsuhi Iskandaryan, Francisco Ramos, and Sergio Trilles. Graph Neural
Network for Air Quality Prediction: A Case Study in Madrid. IEEE Access,
11:2729-2742, 2023.

Elvin Isufi, Andreas Loukas, Nathanael Perraudin, and Geert Leus. Forecasting
time series with VARMA recursions on graphs. IEEE Transactions on Signal
Processing, 67(18):4870-4885, 2019.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent
neural networks-with an erratum note. Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report, 148(34):
13, 2001.

Herbert Jaeger, Mantas Lukosevic¢ius, Dan Popovici, and Udo Siewert. Opti-
mization and Applications of Echo State Networks with Leaky-Integrator
Neurons. Neural Networks, 20(3):335-352, 2007.

Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Pa-
pakonstantinou, Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi.
Big data and its technical challenges. Communications of the ACM, 57(7):
86-94, 2014.

Brijnesh J Jain. Statistical graph space analysis. Pattern Recognition, 60:
802-812, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
Gumbel-Softmax. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=rkE3y85ee.

https://openreview.net/forum?id=rkE3y85ee

195 Bibliography

Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin
Flunkert, Michael Bohlke-Schneider, and Laurent Callot. Criteria for classify-
ing forecasting methods. International Journal of Forecasting, 36(1):167-177,
2020.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A
survey. Fxpert Systems with Applications, 207:117921, 2022.

Guangyin Jin, Yuxuan Liang, Yuchen Fang, Jincai Huang, Junbo Zhang, and
Yu Zheng. Spatio-temporal graph neural networks for predictive learning in
urban computing: A survey. arXiv preprint arXiv:2303.14483, 2023a.

Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan.
Multivariate time series forecasting with dynamic graph neural ODEs. [EFEE
Transactions on Knowledge and Data Engineering, 2022.

Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi,
Geoffrey I Webb, Irwin King, and Shirui Pan. A Survey on Graph Neural Net-
works for Time Series: Forecasting, Classification, Imputation, and Anomaly
Detection. arXiv preprint arXiv:2307.03759, 2023b.

Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. 1960.

Vassilis Kalofolias, Xavier Bresson, Michael Bronstein, and Pierre Van-
dergheynst. Matrix completion on graphs. arXiv preprint arXiv:1408.1717,
2014.

Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais,
and Shawn O’Banion. Examining covid-19 forecasting using spatio-temporal
graph neural networks. arXiv preprint arXw:2007.03113, 2020.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan,
Jaspreet Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart,
and Marcus Brubaker. Time2vec: Learning a vector representation of time.
arXiw preprint arXiww:1907.05321, 2019.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. Representation Learning for Dynamic
Graphs: A Survey. J. Mach. Learn. Res., 21(70):1-73, 2020.

196 Bibliography

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael
Bronstein. Differentiable graph module (dgm) for graph convolutional net-
works. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
2022.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-
had Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey.
ACM computing surveys (CSUR), 54(10s):1-41, 2022.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural Con-
trolled Differential Equations for Irregular Time Series. In Advances in
Neural Information Processing Systems, volume 33, pages 6696-6707. Curran
Associates, Inc., 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
3Ind International Conference on Learning Representations, ICLR 2015, 2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In
International Conference on Learning Representations, 2013.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard
Zemel. Neural relational inference for interacting systems. In International
Conference on Machine Learning, pages 2688-2697. PMLR, 2018.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. In International Conference on Learning Represen-

tations (ICLR), 2017.

Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic
perspectives, 15(4):143-156, 2001.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and
where to find them: The Gumbel-top-K trick for sampling sequences without
replacement. In International Conference on Machine Learning, pages 3499—

3508. PMLR, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Estimating Gradients for
Discrete Random Variables by Sampling without Replacement. In In-
ternational Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rklEj2EFvB.

https://openreview.net/forum?id=rklEj2EFvB
https://openreview.net/forum?id=rklEj2EFvB

197 Bibliography

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural Operator:
Learning Maps Between Function Spaces With Applications to PDEs. Journal
of Machine Learning Research, 24(89):1-97, 2023. ISSN 1533-7928.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25, 2012.

Manuel Kunz, Stefan Birr, Mones Raslan, Lei Ma, Zhen Li, Adele Gouttes,
Mateusz Koren, Tofigh Naghibi, Johannes Stephan, Mariia Bulycheva, et al.
Deep Learning based Forecasting: a case study from the online fashion
industry. arXiv preprint arXw:2505.14406, 2023.

Sanmukh R. Kuppannagari, Yao Fu, Chung Ming Chueng, and Viktor K.
Prasanna. Spatio-Temporal Missing Data Imputation for Smart Power Grids.
In Proceedings of the Twelfth ACM International Conference on Future Energy
Systems, e-Energy 21, page 458-465, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383332. doi: 10.1145/3447555.
3466586.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling
long-and short-term temporal patterns with deep neural networks. In The
41st international ACM SIGIR conference on research € development in
information retrieval, pages 95-104, 2018.

Yann LeCun and Yoshua Bengio. Convolutional Networks for Images, Speech,
and Time Series, page 255—258. MIT Press, Cambridge, MA, USA, 1998.
ISBN 0262511029.

Pierre L’Ecuyer. Note: On the interchange of derivative and expectation for
likelihood ratio derivative estimators. Management Science, 41(4):738-747,
1995.

Geert Leus, Antonio G Marques, José MF Moura, Antonio Ortega, and David I
Shuman. Graph Signal Processing: History, development, impact, and outlook.
IEEFE Signal Processing Magazine, 40(4):49-60, 2023.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang
Wang, and Xifeng Yan. Enhancing the locality and breaking the memory
bottleneck of transformer on time series forecasting. Advances in Neural
Information Processing Systems, 32:5243-5253, 2019.

198 Bibliography

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations, 2018.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What
Makes Convolutional Models Great on Long Sequence Modeling? In The

Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=TGJSPbRpJX-.

Yubo Liang, Zezhi Shao, Fei Wang, Zhao Zhang, Tao Sun, and Yongjun
Xu. BasicTS: An Open Source Fair Multivariate Time Series Prediction
Benchmark. In International Symposium on Benchmarking, Measuring and
Optimization, pages 87-101. Springer, 2022a.

Yuebing Liang, Zhan Zhao, and Lijun Sun. Memory-augmented dynamic graph
convolution networks for traffic data imputation with diverse missing patterns.
Transportation Research Part C: Emerging Technologies, 143:103826, 2022b.

Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song,
Shirui Pan, and Qingsong Wen. Foundation models for time series analysis:
A tutorial and survey. arXiv preprint arXiv:2403.14735, 2024.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion
transformers for interpretable multi-horizon time series forecasting. Interna-
tional Journal of Forecasting, 37(4):1748-1764, 2021.

Tsungnan Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term
dependencies in NARX recurrent neural networks. IEEE Transactions on
Neural Networks, 7(6):1329-1338, 1996. doi: 10.1109/72.548162.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data,
volume 793. John Wiley & Sons, 2019.

Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun
Chen, and Xuan Song. Spatio-temporal adaptive embedding makes vanilla
transformer sota for traffic forecasting. In Proceedings of the 32nd ACM
international conference on information and knowledge management, pages
4125-4129, 2023a.

Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu.
PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation,
February 2023b.

https://openreview.net/forum?id=TGJSPbRpJX-

199 Bibliography

Weifeng Liu, Puskal P Pokharel, and Jose C Principe. Correntropy: Properties
and applications in non-Gaussian signal processing. IEFEE Transactions on
Signal Processing, 55(11):5286-5298, 2007.

Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao
Huang, Zhenguang Liu, Bryan Hooi, and Roger Zimmermann. LargeST:
A Benchmark Dataset for Large-Scale Traffic Forecasting. arXiw preprint
arXiv:2306.08259, 2023c.

Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan
Zhou, and Wei Chen. Multivariate Time-Series Forecasting with Tempo-
ral Polynomial Graph Neural Networks. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022. URL https://openreview.net/forum?
id=pMumil2EJh.

Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. NAOMI:
Non-autoregressive multiresolution sequence imputation. Advances in Neural
Information Processing Systems, 32, 2019.

Zibo Liu, Parshin Shojaee, and Chandan K. Reddy. Graph-based Multi-ODE
Neural Networks for Spatio-Temporal Traffic Forecasting. Transactions on
Machine Learning Research, 2023d. ISSN 2835-8856.

Greta M Ljung and George EP Box. On a Measure of Lack of Fit in Time
Series Models. Biometrika, 65(2):297-303, 1978.

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno
Lepri, Pietro Lio, Franco Scarselli, and Andrea Passerini. Graph Neural
Networks for Temporal Graphs: State of the Art, Open Challenges, and
Opportunities. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=pHCdMat0OgI.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqgiang Zhang, and George Em Karni-
adakis. Learning Nonlinear Operators via DeepONet Based on the Universal
Approximation Theorem of Operators. Nature Machine Intelligence, 3(3):
218-229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5.

Mantas LukoSevi¢ius. A practical guide to applying echo state networks. In
Neural networks: Tricks of the trade, pages 659-686. Springer, 2012.

https://openreview.net/forum?id=pMumil2EJh
https://openreview.net/forum?id=pMumil2EJh
https://openreview.net/forum?id=pHCdMat0gI

200 Bibliography

Mantas LukoSevicius and Herbert Jaeger. Reservoir Computing Approaches to
Recurrent Neural Network Training. Computer Science Review, 3(3):127-149,
2009.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju,
Ming Zhang, and Yizhou Sun. HOPE: High-order Graph ODE For Modeling
Interacting Dynamics. In Proceedings of the 40th International Conference
on Machine Learning, pages 23124-23139. PMLR, July 2023.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, and Yuan Xiaojie. Multi-
variate Time Series Imputation with Generative Adversarial Networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Yonghong Luo, Ying Zhang, Xiangrui Cai, and Xiaojie Yuan. E2GAN: End-to-
End Generative Adversarial Network for Multivariate Time Series Imputation.
In Proceedings of the Twenty-FEighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, pages 3094-3100. International Joint Conferences
on Artificial Intelligence Organization, 7 2019.

Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro,
and Shih-Fu Chang. CDSA: cross-dimensional self-attention for multivariate,
geo-tagged time series imputation. arXwv preprint arXiv:1905.09904, 2019.

Yihong Ma, Patrick Gerard, Yijun Tian, Zhichun Guo, and Nitesh V Chawla.
Hierarchical Spatio-Temporal Graph Neural Networks for Pandemic Forecast-
ing. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pages 1481-1490, 2022.

C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on
Learning Representations, 2017.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4
Competition: 100,000 time series and 61 forecasting methods. International
Journal of Forecasting, 36(1):54-74, 2020.

Danilo P Mandic and Jonathon Chambers. Recurrent neural networks for
prediction: learning algorithms, architectures and stability. John Wiley &
Sons, Inc., 2001.

201 Bibliography

Alessandro Manenti, Daniele Zambon, and Cesare Alippi. Learning Latent
Graph Structures and their Uncertainty. arXiv preprint arXiv:2405.19933,
2024.

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to Reconstruct Missing
Data from Spatiotemporal Graphs with Sparse Observations. In Advances in
Neural Information Processing Systems, 2022.

Ivan Marisca, Cesare Alippi, and Filippo Maria Bianchi. Graph-based Fore-
casting with Missing Data through Spatiotemporal Downsampling. arXiv
preprint arXiv:2402.10634, 2024.

Tommaso Marzi, Arshjot Khehra, Andrea Cini, and Cesare Alippi. Feudal
Graph Reinforcement Learning. arXiv preprint arXiv:2304.05099, 2023.

Daiki Matsunaga, Toyotaro Suzumura, and Toshihiro Takahashi. Exploring
graph neural networks for stock market predictions with rolling window
analysis. arXw preprint arXiv:1909.10660, 2019.

Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo method. Journal
of the American statistical association, 44(247):335-341, 1949.

Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei
Yin. Generative Semi-supervised Learning for Multivariate Time Series
Imputation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8983-8991, 2021.

Alessio Micheli and Domenico Tortorella. Discrete-time dynamic graph echo
state networks. Neurocomputing, 496:85-95, 2022.

Pasquale Minervini, Luca Franceschi, and Mathias Niepert. Adaptive
perturbation-based gradient estimation for discrete latent variable models.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 9200-9208, 2023.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in
belief networks. In International Conference on Machine Learning, pages

1791-1799. PMLR, 2014.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

chronous Methods for Deep Reinforcement Rearning. In International Con-
ference on Machine Learning, pages 1928-1937. PMLR, 2016.

202 Bibliography

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte
Carlo Gradient Estimation in Machine Learning. J. Mach. Learn. Res., 21
(132):1-62, 2020.

Pablo Montero-Manso and Rob J Hyndman. Principles and algorithms for
forecasting groups of time series: Locality and globality. International Journal
of Forecasting, 37(4):1632-1653, 2021.

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric Matrix
Completion with Recurrent Multi-Graph Neural Networks. Advances in
Neural Information Processing Systems, 30, 2017.

neptune.ai. Neptune: Metadata store for MLOps, built for research and
production teams that run a lot of experiments, 2021. URL https://
neptune.ai.

Vlad Niculae, Caio F Corro, Nikita Nangia, Tsvetomila Mihaylova, and An-
dré FT Martins. Discrete latent structure in neural networks. arXwv preprint
arXiv:2301.07473, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A
Time Series is Worth 64 Words: Long-term Forecasting with Transformers.
In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=JbdcOvTOcol.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE:
backpropagating through discrete exponential family distributions. Advances
in Neural Information Processing Systems, 34:14567-14579, 2021.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we
have is low-pass filters. arXiv preprint arXiv:1905.09550, 2019.

Kin G. Olivares, Cristian Challa, Federico Garza, Max Mergenthaler Canseco,
and Artur Dubrawski. NeuralForecast: User friendly state-of-the-art neural
forecasting models. PyCon Salt Lake City, Utah, US 2022, 2022. URL
https://github.com/Nixtla/neuralforecast.

Shayegan Omidshafiei, Daniel Hennes, Marta Garnelo, Zhe Wang, Adria Re-
casens, Eugene Tarassov, Yi Yang, Romuald Elie, Jerome T Connor, Paul
Muller, et al. Multiagent off-screen behavior prediction in football. Scientific
reports, 12(1):8638, 2022.

https://neptune.ai
https://neptune.ai
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol
https://github.com/Nixtla/neuralforecast

203 Bibliography

Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification. In International Conference on
Learning Representations, 2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXww preprint
arXiw:1609.03499, 2016.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio.
N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rlecqn4YwB.

Boris N. Oreshkin, Arezou Amini, Lucy Coyle, and Mark J. Coates. FC-
GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal
Traffic Forecasting. In AAAI 2021.

Antonio Ortega, Pascal Frossard, Jelena Kovacevi¢, Jos¢é MF Moura, and
Pierre Vandergheynst. Graph signal processing: Overview, challenges, and
applications. Proceedings of the IEEE, 106(5):808-828, 2018.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar
Gulcehre, Razvan Pascanu, and Soham De. Resurrecting recurrent neural
networks for long sequences. In International Conference on Machine Learning,

pages 26670-26698. PMLR, 2023.

Benjamin Paassen, Daniele Grattarola, Daniele Zambon, Cesare Alippi, and
Barbara Eva Hammer. Graph edit networks. In International Conference on
Learning Representations, 2020.

Soumyasundar Pal, Liheng Ma, Yingxue Zhang, and Mark Coates. RNN with
Particle Flow for Probabilistic Spatio-temporal Forecasting. In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8336-8348. PMLR, 18-24
Jul 2021.

Anastasios Panagiotelis, Puwasala Gamakumara, George Athanasopoulos, and
Rob J Hyndman. Probabilistic forecast reconciliation: Properties, evaluation

and score optimisation. Furopean Journal of Operational Research, 306(2):
693-706, 2023.

https://openreview.net/forum?id=r1ecqn4YwB

204 Bibliography

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic
modeling and inference. The Journal of Machine Learning Research, 22(1):
2617-2680, 2021.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegen:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 53635370,
2020.

Biswajit Paria, Rajat Sen, Amr Ahmed, and Abhimanyu Das. Hierarchically
regularized deep forecasting. arXiw preprint arXiv:2106.07650, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024-8035. Curran Associates, Inc.,
2019.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison.
Gradient estimation with stochastic softmax tricks. Adwvances in Neural
Information Processing Systems, 33:5691-5704, 2020.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied
Babai, Devon K Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J
Bessa, Jakub Bijak, John E Boylan, et al. Forecasting: theory and practice.
International Journal of Forecasting, 2022.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen
Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena Hierarchy:
Towards Larger Convolutional Language Models. In International Conference
on Machine Learning, pages 28043-28078. PMLR, 2023.

205 Bibliography

Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den
Broeck, Mathias Niepert, and Christopher Morris. Probabilistically Rewired
Message-Passing Neural Networks. In International Conference on Learn-
ing Representations, 2024a. URL https://openreview.net/forum?id=
Tj6Wcx7gVk.

Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert.
Probabilistic Graph Rewiring via Virtual Nodes. arXiv preprint
arXiw:2405.17311, 2024b.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems, 35:
14501-14515, 2022.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. Deep state space models for time
series forecasting. Advances in Neural Information Processing Systems, 31:
77857794, 2018.

Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro
Mercado, Jan Gasthaus, and Tim Januschowski. End-to-end learning of
coherent probabilistic forecasts for hierarchical time series. In International
Conference on Machine Learning, pages 8832-8843. PMLR, 2021.

Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro
Mercado, Tim Januschowski, Yuyang Wang, and Michael Bohlke-Schneider.
Coherent probabilistic forecasting of temporal hierarchies. In International
Conference on Artificial Intelligence and Statistics, pages 9362-9376. PMLR,
2023.

Nikhil Rao, Hsiang-Fu Yu, Pradeep Ravikumar, and Inderjit S Dhillon. Collab-
orative Filtering with Graph Information: Consistency and Scalable Methods.

In Advances in neural information processing systems, volume 2, page 7.
Citeseer, 2015.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Au-
toregressive denoising diffusion models for multivariate probabilistic time

https://openreview.net/forum?id=Tj6Wcx7gVk
https://openreview.net/forum?id=Tj6Wcx7gVk

206 Bibliography

series forecasting. In International Conference on Machine Learning, pages
8857-8868. PMLR, 2021a.

Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs M Bergmann, and
Roland Vollgraf. Multivariate Probabilistic Time Series Forecasting via Condi-
tioned Normalizing Flows. In International Conference on Learning Represen-
tations, 2021b. URL https://openreview.net/forum?id=WiGQBFuVRv.

Anirudh Ravula, Chris Alberti, Joshua Ainslie, Li Yang, Philip Minh Pham,
Qifan Wang, Santiago Ontanon, Sumit Kumar Sanghai, Vaclav Cvicek, and
Zach Fisher. ETC: Encoding long and structured inputs in Transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava
Goel. Self-critical sequence training for image captioning. In Proceedings
of the IEEFE conference on computer vision and pattern recognition, pages

7008-7024, 2017.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In
International Conference on Learning Representations, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. Temporal graph networks for deep learning
on dynamic graphs. arXw preprint arXiw:2006.10637, 2020.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain,
Xiaowen Dong, and Michael Bronstein. On the Unreasonable Effectiveness
of Feature propagation in Learning on Graphs with Missing Node Features.
arXiv preprint arXw:2111.12128, 2021.

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexan-
der Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, , Guzman Lopez,
Nicolas Collignon, and Rik Sarkar. PyTorch Geometric Temporal: Spatiotem-
poral Signal Processing with Neural Machine Learning Models. In Proceedings
of the 30th ACM International Conference on Information and Knowledge
Management, page 4564-4573, 2021.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent Ordinary
Differential Equations for Irregularly-Sampled Time Series. In Advances in

https://openreview.net/forum?id=WiGQBFuVRv

207 Bibliography

Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976.

Reuven Y Rubinstein. Some problems in Monte Carlo optimization. PhD thesis,
University of Riga, 1969.

Alex Rubinsteyn and Sergey Feldman. fancyimpute: An Imputation Library
for Python. 2016. URL https://github.com/iskandr/fancyimpute.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and
the transferability of graph neural networks. Advances in Neural Information
Processing Systems, 33:1702-1712, 2020.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey
on oversmoothing in graph neural networks. arXiv preprint arXiw:2303.10993,
2023.

Mohammad Sabbaqi and Elvin Isufi. Graph-time convolutional neural networks:
Architecture and theoretical analysis. arXiw preprint arXiw:2206.15174, 2022.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski.

DeepAR: Probabilistic forecasting with autoregressive recurrent networks.
International Journal of Forecasting, 36(3):1181-1191, 2020.

Victor Garcia Satorras, Syama Sundar Rangapuram, and Tim Januschowski.
Multivariate time series forecasting with latent graph inference. arXiv preprint
arXiv:2203.03423, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61-80, 2008.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In Furopean semantic web conference, pages 593—-607. Springer,
2018.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gra-
dient estimation using stochastic computation graphs. Advances in Neural
Information Processing Systems, 28, 2015.

https://github.com/iskandr/fancyimpute

208 Bibliography

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally:
A deep neural network approach to high-dimensional time series forecasting.
Advances in Neural Information Processing Systems, 32, 2019.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier Bresson.
Structured sequence modeling with graph convolutional recurrent networks.
In International Conference on Neural Information Processing, pages 362-373.
Springer, 2018.

Chao Shang and Jie Chen. Discrete Graph Structure Learning for Forecasting
Multiple Time Series. In Proceedings of International Conference on Learning
Representations, 2021.

Zezhi Shao, Zhao Zhang, Fei Wang, Wei Wei, and Yongjun Xu. Spatial-
Temporal Identity: A Simple yet Effective Baseline for Multivariate Time
Series Forecasting. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, page 4454-4458, 2022.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
Rif A. Saurous, Yannis Agiomvrgiannakis, and Yonghui Wu. Natural TTS
Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions. In 2018
IEEFE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2018. doi: 10.1109/ICASSP.2018.8461368.

Jiaxin Shi, Ke Alexander Wang, and Emily Fox. Sequence Modeling with
Multiresolution Convolutional Memory. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 31312-31327. PMLR, 23-29 Jul 2023.
URL https://proceedings.mlr.press/v202/shi23f.html.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. Convolutional LSTM network: A machine learning approach

for precipitation nowcasting. Advances in Neural Information Processing
Systems, 28, 2015.

Satya Narayan Shukla and Benjamin Marlin. Multi-Time Attention Networks
for Irregularly Sampled Time Series. In International Conference on Learn-
ing Representations, 2021. URL https://openreview.net/forum?id=
4c0J61wQ4_.

https://proceedings.mlr.press/v202/shi23f.html
https://openreview.net/forum?id=4c0J6lwQ4_
https://openreview.net/forum?id=4c0J6lwQ4_

209 Bibliography

Satya Narayan Shukla and Benjamin M Marlin. A survey on principles, models
and methods for learning from irregularly sampled time series. arXiv preprint
arXiv:2012.00168, 2020.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine, 30(3):83-98, 2013.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and
modeling of dynamic networks using dynamic graph neural networks: A
survey. IFEE Access, 9:79143-79168, 2021.

Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting. International Journal of Forecasting, 36
(1):75-85, 2020.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the
classification of structures. IEEE Transactions on Neural Networks, 8(3):
714-735, 1997.

Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Missing data imputation
with adversarially-trained graph convolutional networks. Neural Networks,
129:249-260, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Rupesh K Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Training very deep
networks. Advances in Neural Information Processing Systems, 28, 2015.

Ljubisa Stankovi¢, Danilo Mandic, Milo§ Dakovié¢, Milo§ Brajovi¢, Bruno Scalzo,
Shengxi Li, and Anthony G Constantinides. Data Analytics on Graphs Part
I1: Signals on Graphs. Foundations and Trends®) in Machine Learning, 13,
2020.

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer
Science & Business Media, 1999.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
Policy Gradient methods for Reinforcement Learning with Function Approxi-
mation. Advances in Neural Information Processing Systems, 12, 1999.

210 Bibliography

Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman. Coherent proba-
bilistic forecasts for hierarchical time series. In International Conference on
Machine Learning, pages 3348-3357. PMLR, 2017.

Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman. Hierarchical
probabilistic forecasting of electricity demand with smart meter data. Journal
of the American Statistical Association, 116(533):27-43, 2021.

Siyi Tang, Jared A Dunnmon, Qu Liangqiong, Khaled K Saab, Tina Baykaner,
Christopher Lee-Messer, and Daniel L Rubin. Modeling multivariate biosignals
with graph neural networks and structured state space models. In Conference
on Health, Inference, and Learning, pages 50-71. PMLR, 2023.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Condi-
tional score-based diffusion models for probabilistic time series imputation.
Advances in Neural Information Processing Systems, 34:24804-24816, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient trans-
formers: A survey. ACM Computing Surveys, 55(6):1-28, 2022.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):2319—
2323, 2000. doi: 10.1126/science.290.5500.2319.

Peter Tino, M Cernansky, and Lubica Benuskovéa. Markovian architectural bias
of recurrent neural networks. IEEE Transactions on Neural Networks, 15(1):
6-15, 2004.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen
Dong, and Michael M. Bronstein. Understanding over-squashing and bot-
tlenecks on graphs via curvature. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=
7UmjRGzp-A.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks. In

Proceedings of the IEEE international conference on computer vision, pages
4489-4497, 2015.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie,
Robert Tibshirani, David Botstein, and Russ B Altman. Missing value
estimation methods for DNA microarrays. Bioinformatics, 17(6):520-525,
2001.

https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A

211 Bibliography

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha
Sohl-Dickstein. Rebar: Low-variance, unbiased gradient estimates for discrete
latent variable models. Advances in Neural Information Processing Systems,
30, 2017.

Emile van Krieken, Jakub Mikolaj Tomczak, and Annette Ten Teije. Storchastic:
A Framework for General Stochastic Automatic Differentiation. In Advances
in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=KAFyFabsK88.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 1441412697.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 5998-6008,
2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph Attention Networks. In International
Conference on Learning Representations, 2018.

Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew
Margenot, and Hanghang Tong. Networked time series imputation via
position-aware graph enhanced variational autoencoders. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 2256-2268, 2023.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural
networks. In International Conference on Machine Learning, pages 23341—
23362. PMLR, 2022.

Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and
Tim Januschowski. Deep factors for forecasting. In International conference
on machine learning, pages 6607-6617. PMLR, 2019.

Ezra Webb, Ben Day, Helena Andres-Terre, and Pietro Li6. Factorised neural
relational inference for multi-interaction systems. ICML 2019 Workshop on
Learning and Reasoning with Graph-Structured Data, 2019.

Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit
assignment techniques in stochastic computation graphs. In International

https://openreview.net/forum?id=KAFyFabsK88
https://openreview.net/forum?id=KAFyFabsK88

212 Bibliography

Conference on Artificial Intelligence and Statistics, pages 2650-2660. PMLR,
2019.

Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka. A multi-horizon quantile recurrent forecaster. arXiv preprint
arXiw:1711.11053, 2017.

Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550-1560, 1990.

Ian R White, Patrick Royston, and Angela M Wood. Multiple imputation using
chained equations: issues and guidance for practice. Statistics in medicine,

30(4):377-399, 2011.

Shanika L. Wickramasuriya. Probabilistic forecast reconciliation under the
Gaussian framework. Journal of Business €& Economic Statistics, pages 1-14,
2023.

Shanika L. Wickramasuriya, George Athanasopoulos, and Rob J Hyndman. Op-
timal forecast reconciliation for hierarchical and grouped time series through
trace minimization. Journal of the American Statistical Association, 114

(526):804-819, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8:229-256, 1992.

Andrew J Wren, Pasquale Minervini, Luca Franceschi, and Valentina Zant-
edeschi. Learning Discrete Directed Acyclic Graphs via Backpropagation.
arXiw preprint arXiw:2210.15353, 2022.

Dongxia Wu, Liyao Gao, Matteo Chinazzi, Xinyue Xiong, Alessandro Vespignani,
Yi-An Ma, and Rose Yu. Quantifying uncertainty in deep spatiotemporal fore-
casting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 1841-1851, 2021a.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=ju_Uqw3840q.

Yuankai Wu, Dingyi Zhuang, Aurelie Labbe, and Lijun Sun. Inductive Graph
Neural Networks for Spatiotemporal Kriging. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 4478-4485, 2021b.

https://openreview.net/forum?id=ju_Uqw384Oq

213 Bibliography

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang.
Graph wavenet for deep spatial-temporal graph modeling. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence, pages
1907-1913, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and
Chengqi Zhang. Connecting the dots: Multivariate time series forecasting
with graph neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery € Data Mining, pages
753-763, 2020.

Zonghan Wu, Da Zheng, Shirui Pan, Quan Gan, Guodong Long, and George
Karypis. TraverseNet: Unifying Space and Time in Message Passing for
Traffic Forecasting. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Jingyun Xiao, Ran Liu, and Eva L Dyer. GAFormer: Enhancing Timeseries
Transformers Through Group-Aware Embeddings. In International Confer-
ence on Learning Representations, 2024.

Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling
via continuous relaxations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pages 3919-3925, 2019.

Qianxiong Xu, Cheng Long, Ziyue Li, Sijie Ruan, Rui Zhao, and Zhishuai Li.
KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy.
arXiv preprint arXw:2511.02565, 2023.

Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards
K-means-friendly spaces: Simultaneous deep learning and clustering. In
International Conference on Machine Learning, pages 3861-3870. PMLR,
2017a.

Dazhi Yang, Hao Quan, Vahid R Disfani, and Licheng Liu. Reconciling solar
forecasts: Geographical hierarchy. Solar Energy, 146:276-286, 2017b.

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, and Chengzhong Xu. How to build a
graph-based deep learning architecture in traffic domain: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(5):3904-3924, 2020.

Yongchao Ye, Shiyao Zhang, and James JQQ Yu. Spatial-temporal traffic data
imputation via graph attention convolutional network. In International
Conference on Artificial Neural Networks, pages 241-252. Springer, 2021.

214 Bibliography

Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. ST-MVL: filling missing
values in geo-sensory time series data. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, 2016.

Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel. Re-visiting the echo state
property. Neural networks, 35:1-9, 2012.

Xueyan Yin, Feifan Li, Yanming Shen, Heng Qi, and Baocai Yin. NodeTrans:
A Graph Transfer Learning Approach for Traffic Prediction. arXiv preprint
arXiw:2207.01301, 2022.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems, 31, 2018.

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Multi-directional
recurrent neural networks: A novel method for estimating missing data. In
Time Series Workshop at the 34th International Conference on Machine,
pages 1-5, 2017.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data im-
putation using generative adversarial nets. In International Conference on
Machine Learning, pages 5689-5698. PMLR, 2018.

Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel Kochenderfer, and Jure
Leskovec. Handling Missing Data with Graph Representation Learning.
Advances in Neural Information Processing Systems, 2020.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional
networks: a deep learning framework for traffic forecasting. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pages
3634-3640, 2018.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. ST-UNet: A spatio-temporal
U-network for graph-structured time series modeling. arXiv preprint
arXiw:1903.05631, 2019.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix
factorization for high-dimensional time series prediction. Advances in Neural
Information Processing Systems, 29, 2016.

215 Bibliography

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. Advances in Neural
Information Processing Systems, 30, 2017.

Daniele Zambon. Anomaly and Change Detection in Sequences of Graphs. PhD
thesis, 2022.

Daniele Zambon and Cesare Alippi. AZ-whiteness Test: A Test for Signal
Uncorrelation on Spatio-Temporal Graphs. In Advances in Neural Information
Processing Systems, 2022.

Daniele Zambon and Cesare Alippi. Where and How to Improve Graph-
based Spatio-temporal Predictors, 2023. URL http://arxiv.org/abs/
2302.01701.

Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Concept Drift and Anomaly
Detection in Graph Streams. IEEE Transactions on Neural Networks and
Learning Systems, pages 1-14, 2018. doi: 10.1109/TNNLS.2018.2804443.

Daniele Zambon, Andrea Cini, Lorenzo Livi, and Cesare Alippi. Graph state-
space models. arXiv preprint arXiw:2301.01741, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective
for time series forecasting? In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 11121-11128, 2023.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and
Viktor Prasanna. GraphSAINT: Graph Sampling Based Inductive Learning
Method. In International Conference on Learning Representations, 2020.

Guogiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial
neural networks: The state of the art. International journal of forecasting, 14
(1):35-62, 1998.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit Yan Ye-
ung. GaAN: Gated Attention Networks for Learning on Large and Spatiotem-
poral Graphs. In 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, 2018.

Michael Zhang, Khaled Kamal Saab, Michael Poli, Tri Dao, Karan Goel, and
Christopher Re. Effectively Modeling Time Series with Simple Discrete State
Spaces. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=2EpjkjzdCAa.

http://arxiv.org/abs/2302.01701
http://arxiv.org/abs/2302.01701
https://openreview.net/forum?id=2EpjkjzdCAa

216 Bibliography

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik.
Graph-Guided Network For Irregularly Sampled Multivariate Time Series.
In International Conference on Learning Representations, ICLR, 2022.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng,
and Haifeng Li. T-gcn: A temporal graph convolutional network for traffic
prediction. IEEFE transactions on intelligent transportation systems, 21(9):
3848-3858, 2019.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. GMAN:
A graph multi-attention network for traffic prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 1234-1241,
2020.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, Jianzhong Qi, Chaochao Chen,
and Longbiao Chen. INCREASE: Inductive Graph Representation Learning
for Spatio-Temporal Kriging. In Proceedings of the ACM Web Conference
2023, pages 673-683, 2023.

Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing Shan, Eric Chang,
and Tianrui Li. Forecasting fine-grained air quality based on big data. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 22672276, 2015.

Weida Zhong, Qiuling Suo, Xiaowei Jia, Aidong Zhang, and Lu Su. Heteroge-
neous spatio-temporal graph convolution network for traffic forecasting with
missing values. In 2021 IEEE j1st International Conference on Distributed
Computing Systems (ICDCS), pages 707-717. IEEE, 2021.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard
Scholkopf. Learning with local and global consistency. Advances in Neural
Information Processing Systems, 16, 2003.

Fan Zhou, Chen Pan, Lintao Ma, Yu Liu, Shiyu Wang, James Zhang, Xinxin
Zhu, Xuanwei Hu, Yunhua Hu, Yangfei Zheng, et al. SLOTH: structured
learning and task-based optimization for time series forecasting on hierarchies.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 11417-11425, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. Informer: Beyond efficient transformer for long sequence

217 Bibliography

time-series forecasting. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 11106-11115, 2021.

Daniel Ziigner, Francois-Xavier Aubet, Victor Garcia Satorras, Tim
Januschowski, Stephan Gilinnemann, and Jan Gasthaus. A study of joint
graph inference and forecasting. arXiv preprint arXiv:2109.04979, 2021.

218 Bibliography

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Goals and challenges
	Contributions
	Publications and dissemination
	Outline

	Forecasting correlated time series
	Problem settings
	Correlated time series

	Multi-step time series forecasting
	Point predictors

	Global and local models
	Global and local predictors
	Global and local models for correlated time series

	Performance metrics and model selection
	Related work
	Deep learning architectures for sequence modeling
	Neural forecasting architectures

	Graph deep learning for time series forecasting
	Graph-based representations for collections of time series
	Extensions to the reference settings

	Forecasting with relational side information
	Spatiotemporal graph neural networks
	Message-passing neural networks
	Spatiotemporal message passing
	A template architecture
	Taxonomy
	Globality and locality in stgnn

	Related work
	Graph deep learning for temporal data

	Benchmarks and baselines
	Benchmarks
	Data from real sensor networks
	Synthetic data

	Baselines
	Some empirical results

	Local effects
	Dealing with local effects
	Hybrid global-local stgnn
	Node embeddings
	Amortized specialization
	Structuring the embedding space

	Transferability
	Related work
	Empirical results
	Synthetic data
	Benchmarks
	Transfer learning

	Discussion and future directions

	Missing data
	Dealing with missing data
	Related work

	Problem definition
	Graph Recurrent Imputation Network
	Spatiotemporal encoder
	Spatial decoder
	Bidirectional model
	Discussion and limitations

	Spatiotemporal Point Imputation Network
	Model conceptualization
	Sparse spatiotemporal attention
	Spatiotemporal positional encoding
	Discussion and limitations

	Empirical results
	In-sample and out-of-sample imputation
	Imputation benchmarks
	Virtual sensing

	Discussion and future directions

	Latent graph learning
	Latent graph learning
	Learning an adjacency matrix
	Learning distributions over graphs
	Related work

	Preliminaries
	Reference settings
	Mean adjacency matrices

	Problem formulation
	Graph learning from correlated time series
	Core challenge

	Score-based graph learning from correlated time series
	Estimating gradients for stochastic message-passing networks
	Graph distributions, graphs sampling, and graphs likelihood
	Parametrizing the graph distribution

	Reducing the variance of the estimator
	Control variates and baselines

	Layer-wise sampling and surrogate objective
	Surrogate objective

	Empirical results
	Datasets
	Controlled environment experiments
	Real-world datasets
	Scalability

	Conclusions and future directions

	Computational scalability
	Dealing with large time series collection
	Computational scalability in STGNNs

	Preliminaries
	Echo state networks

	Scalable spatiotemporal GNNs
	Scalable spatiotemporal representation
	Multi-scale decoder
	Training and sampling

	Related work
	Empirical results
	Experimental setup
	Results

	Discussion and future directions

	Graph-based hierarchical forecasting
	Hierarchical time series and graph clustering
	Related work

	Preliminaries
	Operational settings
	Hierarchical time series

	Graph-based hierarchical clustering and forecasting
	Graph-based hierarchical forecasting
	End-to-end clustering and forecasting
	Forecast reconciliation

	Empirical results
	End-to-end hierarchical clustering and forecasting
	Cluster analysis

	Discussion and future directions

	Conclusion
	Future directions
	Final remarks

	Torch Spatiotemporal
	Related work

	Performance metrics
	Experimental setup
	Appendix to Chapter 4
	Additional details on the experimental setup
	Reference architectures
	Hyperparameters

	Appendix to Chapter 5
	Transfer learning experiment
	Additional results

	Appendix to Chapter 6
	Additional details on the experimental setup
	Hyperparameters

	Appendix to Chapter 7
	Deferred proofs
	Proof of Lemma 1
	Proof of Lemma 2

	Details on the computation of the SNS likelihood
	Additional details on the experimental setup
	Synthetic experiments
	AQI experiment
	Traffic experiment

	Appendix to Chapter 8
	Additional details on the experimental setup
	Hardware platform
	Datasets
	Additional details on the SGP architecture
	Training and evaluation procedure

	Appendix to Chapter 9
	Additional details on the experimental setup
	Reference architecture
	Hyperparameters and training details

	Bibliography

